虽然对海洋二氧化碳去除(MCDR)的研究扩大了速度,但对单个MCDR选项的风险和好处的重要未知数仍然存在。本文分析了对MCDR的专家理解的假设和期望,重点是对这一新兴气候行动领域负责任治理的核心问题。利用了与参与MCDR研究项目的专家进行学术和企业家精神的访谈,我们重点介绍了四个主题紧张关系,这些主题紧张局势使他们的思维定向,但在科学和技术评估中通常是未陈述或隐含的:(1)“自然性”作为MCDR方法评估的标准的相关性; (2)通过循证建设的替代范式来加速研发活动的需要; (3)MCDR作为一种废物管理形式的框架,反过来又将产生新的(目前知之甚少)的环境污染物形式; (4)对包容性治理的承诺,在确定MCDR干预措施中的特定利益相关者或选民方面的困难。尽管对这四个问题的专家共识不太可能,但我们建议确保考虑这些主题的方法丰富有关新型MCDR能力的负责发展的辩论。
抽象背景抗塑性化学疗法在引起免疫原性死亡(ICD)时非常有效,从而诱导抗肿瘤免疫反应甚至消除肿瘤。然而,激活的胱天蛋白酶是大多数癌症化学治疗剂的标志,使凋亡在免疫学上保持沉默。它们是否对于化学疗法诱导的细胞死亡和体内细胞的凋亡清除率仍然难以捉摸。方法进行了基于理性细胞的抗癌药物库筛查,以探索在凋亡caspase抑制下的免疫原性凋亡途径和治疗靶标。基于这种筛选,caspase抑制在增强化学疗法诱导的抗肿瘤免疫力和作用机理方面的潜力通过各种细胞和小鼠模型研究了。结果热休克蛋白90(HSP90)抑制激活肿瘤细胞中的胱天蛋白酶,产生丰富的基因组和线粒体DNA片段,并导致细胞凋亡。同时,它劫持了caspase-9信号传导以抑制固有的DNA感应。Pharmacological blockade or genetic deletion of Caspase-9 causes tumor cells to secrete interferon (IFN)- β via tumor intrinsic mitochondrial DNA/the second messenger cyclic GMP–AMP (cGAS) /stimulator of interferon genes (STING) pathway without impairing Hsp90 inhibition-induced cell death.重要的是,CASPASE-9和HSP90抑制均可触发ICD,从而释放了许多损伤相关的分子模式,例如高摩动式组盒蛋白1,ATP和I型IFN和IFNS型IFN在体外和显着的抗肿瘤效应。此外,联合处理还通过上调编程的死亡配体1(PD-L1)来诱导适应性抗性。其他PD-L1阻滞可以进一步克服这种获得的免疫阻力并实现完全的肿瘤回归。结论caspase-9信号传导有选择地挑衅基于HSP90的化学疗法介导的肿瘤先天感应,从而导致CD8 + T细胞依赖性肿瘤控制。我们的发现暗示胱天冬酶途径的药理调节增加了化学疗法诱导的凋亡的肿瘤内在感应和免疫原性,
类型的人造功能材料用于水纯化,生物传感,光电塔克斯甚至抗病毒过滤。[7-10]人造物质中淀粉样蛋白原纤维的潜力可以通过形成各向异性组件的能力进一步富集。与许多其他类似棒状的胶体颗粒一样,淀粉样蛋白原纤维的水悬浮液可以自组装成具有远距离定向排序的相位,即由熵驱动的液晶(LCS)。[11-14]除了没有位置排序的常见列表外,原纤维的固有手性还导致纤维化相位,并通过控制原纤维的长度分布和限制,并通过控制原纤维的螺旋扭曲对齐。[15,16]这些有序的状态导致中曲科中原纤维组件的机械,流变和光学性质各向异性,但是,在官能材料的制造中,尚未充分利用这一充分的优势。[7,8]
[1] F. Mantovani 等人:“面向医疗保健专业人员的虚拟现实培训”,CyberPsychology & Behavior,第 6 卷,第 4 期,第 389–395 页,网址:https://doi.org/10.1089/10949310332 2278772,2003 年。[2] S. Barteit 等人:“用于医学教育的增强、混合和基于虚拟现实的头戴式设备:系统评价”,JMIR Serious Games,第 9 卷,第 3 期,网址:https://doi.org/10.2196/29080,2021 年。[3] S. La Padula 等人:“使用新的增强现实模拟软件对隆胸患者满意度进行评估:一项前瞻性研究”,J Clin Med., 第 11 卷,第 12 期,doi:10.3390/jcm11123464,2022 年。[4] A. Berton 等人:“虚拟现实、增强现实、游戏化和远程康复:对骨科患者康复的心理影响”,临床医学杂志,第 9 卷,第 8 期,第 1-13 页,网址:https://doi.org/10.3390/jcm9082567,2020 年。[5] T. Ong 等人:“在新冠疫情期间及之后使用扩展现实增强远程医疗:观点”,JMIR Serious Games,第 9 卷,第 3 期,网址:https://doi.org/10.2196/26520,2021 年。[6] L. Herrador Colmenero 等人:“镜像疗法、运动意象和虚拟反馈对截肢后幻肢痛的有效性:系统评价”,国际假肢和矫形器,第 42 卷,第 3 期,第 288-298 页。网址:https://doi.org/10.1177/0309364617740230,2018 年。[7] M. Osumi 等人:“虚拟现实康复缓解幻肢痛的特征”,《疼痛医学》(美国),第 20 卷,第 5 期,第 1038-1046 页,网址:https://doi.org/10.1093/pm/pny269,2019 年。[8] A. Rothgangel 和 R. Bekrater-Bodmann:“镜像疗法与增强/虚拟现实应用:面向基于机制的定制幻肢痛治疗”,《疼痛管理》,第 9 卷,第 2 期,第 151-159 页,网址: https://doi.org/10.2217/pmt-2018-0066,2019 年。[9] CC Berger 等人:“触觉的恐怖谷”,Science Robotics,第 3 卷,第 17 期,第 2-4 页,网址:https://doi.org/10.1126/scirobotics.aar7010,2018 年。[10] M. D'Alonzo 等人:“视觉和触觉的不同虚拟化水平产生了化身手部体现的恐怖谷”,Scientific Reports,第 9 卷,第 1 期,第 1-11 页,网址:https://doi.org/10.1038/s41598-019-55478-z,2019 年。[11] M. Fleury,等人:“脑机接口和神经反馈中触觉反馈使用情况调查”,Frontiers in Neuroscience,14(6 月),第 1-16 页。网址:https://doi.org/10.3389/fnins.2020.00528,2020 年。[12] J. Tompson 等人:“使用卷积网络实时连续恢复人手姿势”,ACM Transactions on Graphics (ToG),第 33 卷,第 5 期,第 1-10 页,2014 年。[13] C. Qian 等人:“实时且稳健的深度手部跟踪”,IEEE 计算机视觉与模式识别会议论文集,DOI:10.1109/CVPR.2014.145,2014 年。
尽管有几个世纪的研究传统,这些研究是专门针对埃里西尼亚的奥秘,但在远程机构中确实发生了什么,但埃里西斯神庙的圣所(1)仍然是未知的:实际上,最重要的仪式是在这个大厅内举行的,但是参与者不允许保留秘密的参与者,但不允许在外部上泄漏任何东西;信徒们对这种裁决的禁令是如此严格地观察到,以至于实践的奥秘和其中发生的仪式行动尚未解决。尽管如此,从一些古老的作者的作品中,我们了解到,主动的目的是在视觉的形式上拥有一个神秘的经历:在荷马举行的赞美诗中,在公元前七世纪左右,可数据,在公元前七世纪左右,这是Eleusinian邪教的最古老的基础神话的最古老的人(2),我们在地球上享受了这些东西。在看到这些东西的地下的人和索菲尔(Sophocles)中“幸福的三次是凡人中看到这些奥秘的凡人”。
量子算法已经发展成为高效解决线性代数任务的算法。然而,它们通常需要深度电路,因此需要通用容错量子计算机。在这项工作中,我们提出了适用于有噪声的中型量子设备的线性代数任务变分算法。我们表明,线性方程组和矩阵向量乘法的解可以转化为构造的汉密尔顿量的基态。基于变分量子算法,我们引入了汉密尔顿量变形和自适应分析,以高效地找到基态,并展示了解决方案的验证。我们的算法特别适用于具有稀疏矩阵的线性代数问题,并在机器学习和优化问题中有着广泛的应用。矩阵乘法算法也可用于汉密尔顿量模拟和开放系统模拟。我们通过求解线性方程组的数值模拟来评估算法的成本和有效性。我们在 IBM 量子云设备上实现了该算法,解决方案保真度高达 99.95%。2021 中国科学出版社。由 Elsevier BV 和中国科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
奇异价值分解对于工程和科学领域的许多问题至关重要。已经提出了几种量子算法来确定给定基质的奇异值及其相关的奇异向量。尽管这些算法是有希望的,但是在近期量子设备上,所需的量子子例程和资源太昂贵了。在这项工作中,我们提出了一种用于奇异值分解(VQSVD)的变分量子算法。通过利用奇异值的变异原理和ky fan定理,我们设计了一种新型的损失函数,以便可以训练两个量子神经网络(或参数化的量子电路)来学习奇异向量并输出相应的奇异值。更重要的是,我们对随机矩阵进行VQSVD的数值模拟以及其在手写数字的图像压缩中的应用。最后,我们讨论了算法在推荐系统和极地分解中的应用。我们的工作探讨了仅适用于Hermitian数据的量子信息处理的新途径,并揭示了矩阵分解在近期量子设备上的能力。
摘要:椎间盘 (IVD) 退化可引起慢性下腰痛 (LBP),从而导致残疾。尽管在治疗椎间盘源性 LBP 方面取得了重大进展,但当前治疗的局限性引发了人们对生物方法的兴趣,包括生长因子和干细胞注射,作为因 IVD 退化 (IVDD) 导致慢性 LBP 患者的新治疗选择。基因疗法为 IVDD 治疗带来了令人兴奋的新可能性,但治疗仍处于起步阶段。使用 PubMed 和 Google Scholar 进行文献检索,以概述 IVDD 基因治疗的原理和现状。回顾了体外和动物模型中基因向退化椎间盘细胞的转移。此外,本综述描述了 RNA 干扰 (RNAi) 基因沉默和成簇规律间隔短回文重复序列 (CRISPR) 系统基因编辑以及哺乳动物雷帕霉素靶 (mTOR) 信号在体外和动物模型中的应用。近年来重大的技术进步为新一代椎间盘内基因治疗慢性椎间盘源性腰痛打开了大门。