手指压力为触摸交互提供了一个新的维度,其中输入由其空间位置和正交力定义。然而,移动设备中集成力传感硬件的有限可用性和复杂性成为探索这一设计空间的障碍。本文介绍了近期移动设备中的两项功能的综合——气压传感器(压力高度计)和入口保护——以感测用户的触摸力。当用户对设备的显示屏施加力时,显示屏会向内弯曲并导致密封底盘内的气压升高。设备的内部气压计可以感测到这种压力的增加。然而,这种变化是不受控制的,需要校准模型将气压映射到触摸力。本文推导出这样的模型,并在四种商用设备(其中两种带有专用力传感器)上证明了其可行性。结果表明,该方法对小于 1 N 的力很敏感,并且可与专用力传感器相媲美。
循环步骤2交易以及与交易相关的详细代码立即集成到横幅杂项矿床表中。当天的所有交易都存储在此表中。当天业务结束时,横幅流程运行,将所有交易从Banner Misc移动。沉积到集成表中。在搬到集成表的过程中,详细代码将转换为智能数据核算字符串。所有交易都位于集成表中,并进行了SmartTag Workday会计,直到当晚晚些时候进行工作日集成过程为止。周期步骤3每天晚上,工作日集成过程(在周期步骤2中提到)运行。此过程总结了每个智能数据标签的所有金额,并创建了一个Workday Journal条目,该条目在Workday上发布了每个标签的批量。请注意,SmartTag的数量不是单独发布的。他们将每个特定集成运行的每个智能标签的总数求和,并汇总为工作日财务的日记帐分录。
手指压力为触摸交互提供了一个新的维度,其中输入由其空间位置和正交力定义。然而,移动设备中集成力传感硬件的可用性有限且复杂性成为探索这一设计空间的障碍。本文介绍了近期移动设备中的两个功能——气压传感器(压力高度计)和入口保护——的综合,以感测用户的触摸力。当用户对设备的显示屏施加力时,它会向内弯曲并导致密封底盘内的气压增加。设备的内部气压计可以感知到这种压力的增加。然而,这种变化是不受控制的,需要校准模型将气压映射到触摸力。本文推导出这样一个模型,并在四种商用设备(其中两种带有专用力传感器)上证明了其可行性。结果表明,该方法对小于 1 N 的力很敏感,并且与专用力传感器相当。
(第15.105(b)部分)该设备已经过测试并发现符合B类数字设备的限制,根据FCC规则的第15部分。这些限制旨在提供合理的保护,以防止住宅安装中有害干扰。此设备会生成,使用和可以辐射射频能量,如果未根据说明进行安装和使用,可能会对无线电通信造成有害干扰。但是,不能保证在特定安装中不会发生干扰。如果此设备确实会对广播或电视接收造成有害干扰,这可以通过关闭设备关闭并继续确定,则鼓励用户尝试通过以下一项或多项措施来纠正干扰:
用法指南:请参阅https://eprints.bbk.ac.uk/policies.html的用法指南,或者请联系lib-eprints@bbbk.ac.uk。
摘要 商用飞机驾驶舱中的触摸屏输入具有潜在优势,包括易于使用、可修改和减轻重量。但是,对湍流的耐受性是其部署的挑战。为了更好地了解湍流对驾驶舱输入方法的影响,我们对三种输入方法的用户性能进行了比较研究——触摸、轨迹球(目前在商用飞机中使用)和旨在帮助手指稳定的触摸屏模板覆盖。在各种交互式任务和三个模拟湍流级别(无、低和高)下比较了这些输入方法。结果表明,随着振动的增加,性能下降,主观工作量增加。当精度要求较低(在所有振动下)时,基于触摸的交互比轨迹球更快,但对于更精确的指向,尤其是在高振动下,它的速度较慢且准确性较低。模板并没有改善触摸选择时间,尽管它确实减少了高振动下小目标的错误,但只有当手指抬起错误通过超时消除时才会发生这种情况。我们的工作提供了有关受湍流影响的任务类型以及在不同振动水平下表现最佳的输入机制的新信息。
显示 – 阳光下可读 分辨率。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。VGA - 640(宽)x 480(高) 屏幕尺寸(对角线)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5.7 英寸 像素配置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。R、G、B 条纹 亮度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。120 英尺朗伯,LED 照明 视角。。。。。。。。。。。。。。。。。。。...。。。。。。。。。。。。。。。。。。。。。。。。。。。+/- 80 o(水平),+80/-60 o(垂直) 对比度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....500:1(典型值) 触摸屏 .................。。。。。。。。。。。。。。。。。。。。。。。。...........5 线电阻,GFG 结构
将触摸屏交互整合到驾驶舱飞行系统中,为飞机制造商、航空公司和飞行员提供了多种潜在优势。然而,振动和湍流对可靠的交互提出了挑战。我们研究了支撑触摸交互的设计空间,它允许用户通过在触摸屏上支撑多个手指,在完成选择之前机械地稳定选择。我们的目标是在高振动水平下实现快速准确的目标选择,而不会在没有振动时妨碍交互性能。评估了三种不同的支撑触摸方法,使用双击、停留或力阈值结合启发式选择标准来区分有意选择和并发支撑接触。我们进行了一项实验,以测试这些方法在抽象选择任务和更现实的飞行任务中的表现。研究结果证实,支撑可以提高振动期间的性能,并表明双击是测试方法中最好的。
在触摸受体,胶质细胞和辅助细胞中起关键作用。然而,这种调节的基础机制知之甚少。我们首次表明,在秀丽隐杆线虫鼻触摸受体的神经胶质中需要氯化物通道CLH-1,以进行触摸反应和调节兴奋性。使用体内Ca 2+和Cl-成像,行为测定以及遗传和药理操作的组合,我们表明CLH-1介导了胶质GABA抑制灰分感官神经元功能以及用于调节灰神经元cAMP水平的CL-通量。最后,我们表明大鼠CLC-2通道挽救了CLH-1的鼻子触摸不敏感的表型,强调了整个物种功能的保护。我们的工作将神经胶质Cl-通道视为触摸灵敏度的新型调节剂。我们提出,Glial CLH-1调节Ca 2+与Ash神经元中CAMP信号之间的相互作用,以控制蠕虫的鼻子触摸受体的灵敏度。
精确的脉冲定时和时间编码在昆虫的神经系统和高阶动物的感觉外围中得到广泛应用。然而,传统的人工神经网络 (ANN) 和机器学习算法无法利用这种编码策略,因为它们的信号表示是基于速率的。即使在人工脉冲神经网络 (SNN) 的情况下,确定时间编码优于 ANN 的速率编码策略的应用仍然是一个悬而未决的挑战。神经形态传感处理系统为探索时间编码的潜在优势提供了理想的环境,因为它们能够从相对脉冲定时中有效地提取聚类或分类时空活动模式所需的信息。在这里,我们提出了一个受沙蝎启发的神经形态模型来探索时间编码的好处,并在基于事件的传感处理任务中对其进行验证。该任务包括仅使用八个空间分离的振动传感器的相对脉冲定时来定位目标。我们提出了两种不同的方法,其中 SNN 以无监督的方式学习聚类时空模式,并展示了如何通过分析和多个 SNN 模型的数值模拟来解决该任务。我们认为,所提出的模型对于使用精确脉冲时间进行时空模式分类是最佳的,可以用作评估基于时间编码的事件感知处理模型的标准基准。