恒压状态下,芯片内部恒流环 CC_COMP 电压大 于 3.5V ,当输出负载电流 I O1 突然增大到 I O2 (超 过恒流输出电流 I OCP ), CC_COMP 会从高电压下 降到 3.5V 以下。当 CC_COMP 下降到 3.5V 时, 芯片会短暂关闭恒流控制,继续以恒压方式工作, 进入 P EAKLOAD 模式,系统升频, I O2 越大频率越大, 并且允许的最大频率增加至 F PKMAX ;与此同时会 启动内部的 P EAKLOAD 模式计时功能,保证此模式 的最大工作时间不会超过预设的 T HOLD 。计时时间 达到 T HOLD 后,芯片会强行退出 P EAKLOAD 模式, 并且会激活一个屏蔽时间 T BLANK 的计时,以确保 允许下一次进入 P EAKLOAD 模式至少超过此 T BLANK 时间;与此同时,会激活内部恒流模块的工作, 在这种情况下,由于负载还是 I O2 ,所以系统的输 出电压会持续下降,直至触发 H ICCUP 保护、系统 重启。
当同步整流管完全开启后, VDS 两端压降完全跟 随次级电流 Is 。随着次级续流电流的减小 VDS 电压升 高,当 VDS 电压增大到 -30mV 时, Gate 驱动电路的 上管供电被关断 , 驱动电压随内部电阻及漏电流开始缓 慢降低;当 VDS 电压增大到 -20mV 时, Gate 驱动电 压会被钳位在 3.3V 左右。如果 VDS 电压增大到 -1mV 时, WS2260C 会在 25ns 的时间内快速将 GATE 电压 拉到 0V 。同时,关断屏蔽时间开始计时,此期间 GATE 保持低电平。直到 VDS 电压大于 2V ,退出关断屏蔽 计时。
摘要:光子探测器获得精确的时序信息的潜力在许多领域,PET和CT扫描仪中在医学成像和粒子物理探测器等等等中的重要性越来越重要。的目标是增加pet扫描仪的敏感性,并通过对每个事件的真实空间点以及未来粒子加速器设定的限制来进一步飞跃,需要进一步飞跃基于闪烁器的电离仪,最终将picoseConds Restolution延伸到几个picoseconds submevs submev subs Mev subs subs subme sev subme subs submev subme sups subme sev subs subs subs subs subsove suble of pet扫描仪的敏感性。尽管几个制造商在过去十年中取得了令人印象深刻的进展,但SIPMS的单个光子时间分辨率(SPTR)仍在70-120 PS FWHM范围内,而10 ps的值则是10 ps或更少的值。这样的步骤需要与传统方法和新技术的发展进行中断。将纳米素化学的非凡潜力与现代微电子学和3D电子整合所采用的新方法相结合的可能性为开发新一代基于过度的sipms的新观点和空前的光相位效率和计时分辨率开发了新一代的观点。
https://upload.wikimedia.org/wikipedia/commons/6/62/CERN_LHC_Proton_Source.JPG https://cdn.zmescience.com/wp-content/uploads/2015/05/cern-lhc-aerial.jpg H t tp://sites.uci.edu/energyobserver/files/2012/11/lhc-aerial.jpg
摘要 - 时间间隔ADC广泛用于高速应用中。该结构可以通过并联多重ADC来增加整个转换器的有效采样率。但是,该体系结构将受到不同子转换器之间的不匹配,包括偏移,增益和时机。时机偏斜会产生动态错误,从而提出更大的挑战。本文介绍了通过两种背景盲目校准技术来解决TI ADC中正时不匹配的最新最新解决方案:a)基于确定性均衡和b)基于输入信号的统计信息的方法。
不良的早期生活经历会对心理健康产生非常持久的负面影响,许多不同的精神疾病都具有这种发展根源。然而,不良经历与这些疾病之间的关联机制仍然不太清楚。在这里,我们利用间隔时间的原理模型提出,对不可预测的早期生活环境的时间表征进行统计上最佳的适应,可以产生快感缺乏症的关键特征,快感缺乏症是一种与抑郁和焦虑等情感障碍相关的跨诊断症状。核心观察是,早期时间的不可预测性会产生更广泛、更不精确的时间预期。结果,奖励预期会降低,联想学习会减慢。当具有此类表征的代理后来被引入更稳定的环境时,他们会表现出消极偏见,对奖励的缺失比对奖励的接受反应更大。有人提出,对负面事件的编码增加是导致以快感缺乏为症状的疾病的原因之一。然后,我们研究了不可预测性如何与另一种形式的逆境(低回报可用性)相互作用。我们发现,不可预测性的影响在更丰富的环境中最为强烈,可能导致完全不同的表型表达。总之,我们的形式化表明,单一机制可以帮助将早期逆境与一系列与快感缺乏相关的行为联系起来,并为多种逆境的互动影响提供了新的见解。
为了进一步避免声音噪声,该电路通过将跳周期模式期间的突发频率限制在 800 Hz 的最大值来防止开关频率 进入可听范围。这是通过一个定时器实现的,该定时器在安静的跳周期工作模式期间被激活。在该计时器计数结束 前,不允许打开开关周期。随着输出功率的降低,开关频率降低,一旦达到 25 kHz ,即达到进入入阈值并进入跳 周期模式。关闭开关管,停止开关周期,一旦开关停止, FB 将上升。一旦 FB 越过跳周期退出阈值(这时仍然为 跳周期工作模式),则打开驱动脉冲。此时,一个 1.25 ms 的计时器 tquiet 与一个计数到 3 的计数器一起启动。下 次 FB 电压降至跳入阈值以下时,只要计数到 3 个驱动脉冲,驱动脉冲就会在当前脉冲结束时停止(至少打开 3 个 开关脉冲)。在计时器计时结束之前不允许再次启动,即使先达到跳周期的退出阈值。需要注意的是,计时器不会 强制下一个循环开始,如果在计时器计时结束时未达到跳周期的退出阈值,则驱动脉冲将等待 FB 达到跳周期退出 阈值。这意味着在空载期间,每次开关至少会有 3 个驱动脉冲,脉冲串间隔周期可能远长于 1.25 ms 。该工作模式 有助于提高空载条件下的效率。 FB 电压必须升高超过 1 V ,才退出跳周期模式。如果在 tquiet 计时结束前 FB 电压 大于 1V ,则驱动脉冲将立即恢复,即控制器不会等待计时器结束。图 4 提供了一个安静跳周期工作原理的示例。
经颅直流刺激(TDC)已被证明可以改变一级运动皮层(M1)的兴奋性并影响在线运动学习。但是,对TDC对运动学习的影响的研究主要集中在简化的运动任务上。本研究的目的是研究在犯罪课程中对M1的阳极刺激是否会影响对相对复杂的节奏定时视频游戏的在线学习。五十八名健康的年轻人被随机分配到A-TDC或假条件下,并进行了2个熟悉块,在接受分配的刺激的同时进行了20分钟的5块练习期,并用非优势的手进行了测试后块。为了评估性能,计算了一个绩效指数,该指数结合了定时精度元素和不正确的密钥输入。结果表明,M1 A-TDCS比在练习过程中的假刺激以及在测试后的整体学习中增强了基于视频游戏的技能的学习。这些结果提供了证据,表明M1 A-TDC可以增强对技能的获取,在这种情况下,绩效的质量或成功取决于技能组成部分之间的优化时机,这可能对在许多现实世界中的应用中的应用有影响。
摘要 全球导航卫星系统 (GNSS),例如 GPS 和伽利略,在全球范围内提供精确的时间和空间坐标,是现代社会关键基础设施的一部分。为了可靠地运行 GNSS,需要高度精确和稳定的系统时间,例如由全球精密计时设施 (PTF) 中托管的多个独立时钟提供的时间。定期测量 PTF 之间的相对时钟偏移,以便有一个后备系统来同步 GNSS 卫星时钟。PTF 之间通信的安全性和完整性至关重要:如果受到损害,可能会导致 GNSS 服务中断。因此,确保 PTF 之间的通信安全是通过量子密钥分发 (QKD) 保护的一个引人注目的用例,因为这项技术提供了信息论安全性。我们已经通过在两个 PTF 之间共享加密的时间同步信息对这种用例进行了现场试验演示,一个位于 Oberpfaffenhofen(德国),另一个位于马泰拉(意大利)——相距超过 900 公里。为了跨越这么远的距离,需要卫星 QKD 系统,以及“最后一英里”地面链路,以将光学地面站 (OGS) 连接到 PTF 的实际位置。在我们的演示中,我们部署了两个完整的 QKD 系统来保护两个位置的最后一英里连接,并通过模拟表明,即将发射的 QKD 卫星将能够利用现有的 OGS 在 Oberpfaffenhofen 和 Matera 之间分发密钥。