电容耦合 电容耦合 电容电压平衡 电容器 碳中和 级联 H 桥 共源共栅 CC-CV 充电 混沌抑制 EMI 充电补偿装置 充电调度 充电站 充电 电动汽车充电基础设施 电路 D 类放大器 闭式方程 组合 MMC-LLC 热电联产 公共接地 共模电流 电力电子通信 通勤 补偿 测量组件 压缩机 计算成本 状态监测 传导损耗 共识 基于共识的合作控制 接触电阻 非接触式能量传输 非接触式电源 控制相互作用 电气系统的控制方法 驱动控制 控制策略 控制器基准 控制器 转换比 转换器电路 转换器控制 转换器机器相互作用
→ 推荐做法 计算成本的另一种方法是使用出口孔或喷嘴直径和施加的压力来计算流量(见表格、图 19 孔口流量、附录图表部分)。 如果必须使用喷嘴,例如从面包上吹掉松散的面粉(图 6),则要确保出口喷嘴和产品之间的距离尽可能短,因为这样可以降低供应压力。 喷嘴应该只对准需要的区域,形成锥形(圆形区域)或扇形喷雾(长而窄的带子)等。 当需要覆盖非常长而窄的区域时,请并行使用喷嘴来形成帘幕,从而缩短到最远点的距离。 确保通向多个喷嘴的主供水管具有足够的直径,以免限制出口流量。
精确模拟高雷诺数可压缩流动具有挑战性。对于直接数值模拟 (DNS),必须解析所有尺度的流体运动,根据 Choi 和 Moin 1 的说法,网格点的数量按 N ∝ Re 37 / 14 L 缩放。虽然 DNS 是最准确的方法,但它的计算成本也最高。大涡模拟 (LES) 仅解析大能量承载流动结构,未解析(即子网格)结构用子网格应力 (SGS) 模型建模,或直接通过数值方案的扩散(即隐式 LES,ILES)来解释。对于壁面解析 LES (WRLES),近壁面条纹的平均长度和展向间距为 x + ≈ 1000 和 z + ≈ 100,通过壁面粘度 µ w 和摩擦速度 u τ = p 变为无量纲
我们的观点基于预测模型和预测表示之间的重要区别。预测模型是系统状态动态的概率分布。模型可以“向前运行”以生成有关系统未来轨迹的预测。这提供了相当大的灵活性:如果有足够的计算时间,具有预测模型的代理可以回答几乎任何有关未来事件概率的查询。然而,“如果有足够的计算时间”这一条件对预测模型在实践中的作用设置了关键限制。需要在严格的计算约束下快速行动的代理可能没有能力向其预测模型提出任意复杂的查询。然而,预测表示会缓存某些查询的答案,从而以有限的计算成本访问它们。1 这种效率提升的代价是灵活性的丧失:只有某些查询可以得到准确回答。
潜在扩散模型(LDM)在图像生成中实现了最先进的性能,但提高了版权和隐私问题。对LDM的对抗性攻击是为了保护未经授权的图像免于在LDM驱动的几弹性生成中使用。但是,这些攻击遭受了中等的表现和过度的计算成本,尤其是在GPU内存中。在本文中,我们提出了对LDM的有效对抗性攻击,该攻击表现出了针对最先进的LDM的最先进的发电管道的卓越性能。我们通过引入多种机制并将攻击的内存成本降低到小于6GB,以记忆效率实现攻击,这使各个用户可以对大多数消费者GPU进行攻击。我们提出的攻击可能是面临LDM为保护自己带来的版权和隐私风险的人们的实用工具。
虽然这听起来与独立的 LLM 或 GenAI 应用程序的功能大致相同,但 AI 代理与 LLM 之间存在一些关键区别,这些区别使得 AI 代理更加强大。(见第 6 页表格)例如,典型的 LLM 驱动聊天机器人通常对多步骤提示的理解能力有限,更不用说根据单个提示规划和执行整个工作流程了。本质上,它们符合传统应用程序的“输入-输出”范式,在收到必须分解为多个较小任务的请求时会感到困惑。它们还难以推理序列,例如需要考虑时间和文本上下文的组合任务。这些限制在使用小型语言模型 (SLM) 时更加明显,因为它们是在较小量的数据上进行训练的,通常会牺牲知识深度和/或输出质量来提高计算成本和速度。
摘要 —尽管 VLSI 社区关心的是工艺变化下高成品率的设计,但昂贵的计算成本使得传统的模拟电路成品率优化方法在工业应用中效率低下。本文提出了一种基于冻融贝叶斯优化技术的模拟电路高效成品率优化方法。成品率分析被集成到贝叶斯优化的探索过程中。通过指定的高斯过程回归方法,灵活的冻融贝叶斯优化技术被用于自动引导设计空间中的搜索并控制工艺空间中成品率分析的精度。制定并解决了性能优化问题以挖掘先验知识,并进一步加速。实验结果表明,与最新方法相比,所提出的方法可以获得 2.47 × –5.73 × 的加速,而不会损失精度。
图。有关外显子和内含子区域的符号DNA序列瞄准了外显子和内含子区域的DNA序列上的分类。在本研究中的设计和方法论,使用基于人工智能的系统进行了DNA序列中的外显子和内含子区域的分析。独创性通常首选用于评估文本数据的聚类方法在DNA序列上使用。这种情况降低了计算成本。的发现是解决生物信息学领域越来越多的数据的解决方案,建立了基于人工智能的结构,可提供低成本。因此,研究与遗传学有关的情况变得更加容易。结论DNA结构上的外显子和内含子区域的准确率为88.88%。宣布道德标准本文的作者宣布,本研究中使用的材料和方法不需要道德委员会许可和/或法律特殊许可。
摘要 —尽管 VLSI 社区关心的是工艺变化下高成品率的设计,但昂贵的计算成本使得传统的模拟电路成品率优化方法在工业应用中效率低下。本文提出了一种基于冻融贝叶斯优化技术的模拟电路高效成品率优化方法。成品率分析被集成到贝叶斯优化的探索过程中。通过指定的高斯过程回归方法,灵活的冻融贝叶斯优化技术被用于自动引导设计空间中的搜索并控制工艺空间中成品率分析的精度。制定并解决了性能优化问题以挖掘先验知识,并进一步加速。实验结果表明,与最新方法相比,所提出的方法可以获得 2.47 × –5.73 × 的加速,而不会损失精度。