摘要。Jacobi符号是诸如原始测试,整数分解和各种加密方案之类的加密应用中的基本原始符号。通过探索算法循环中模量减少之间的相互依赖性,我们开发了一种精致的方法,可显着提高计算效率。以Rust语言实施的我们的光学算法,其性能比传统的教科书方法增长了72%,并且是以前已知的Rust实现的两倍。这项工作不仅提供了对优化的详细分析,而且还包括全面的基准比较,以说明我们方法的实际优势。我们的算法根据开源许可公开获得,从而促进了基础加密优化的进一步研究。
•Harry Markowitz特殊区别奖的获胜者“与串行相关,政权转换和交易成本的停止损失策略”,Andrew W. Lo,金融市场杂志,2017年。“带有种植园数据的空间感染性疾病模型的统计推断和计算效率”,帕特里克·E·布朗,弗洛伦西亚·奇马德,杰弗里·R·罗斯塔尔,Xin Wang,皇家统计学会杂志(C系C),2014年。学生订婚多伦多学生投资俱乐部(TSIC)2020-2022董事会成员,顾问•在多伦多学生投资俱乐部董事会任职,在整个
我们提供了恒定弹性经济地理模型中名义和实际工资对生产力冲击暴露的充分统计数据。这些暴露指标总结了每个地点名义和实际工资对所有地点生产力冲击的一阶一般均衡弹性。它们可以使用常见的贸易数据以及贸易和移民弹性值轻松计算。它们在底层经济机制方面具有直观的解释。计算所有双边地点对的这些指标涉及单个矩阵求逆,因此即使在极高维状态空间中也能保持计算效率。这些充分的统计数据提供了与理论一致的地点对生产力冲击暴露的指标,可用于进一步的经济和统计分析。
量子计算机有可能在科学计算领域带来重大突破。量子计算预计将带来如此巨大的计算效率提升,尽管它还处于起步阶段,但它已经与传统的高性能计算技术相结合。在这里,我们概述了量子计算、现状和未来情景。欧洲拥有独特的机会,可以利用欧洲 HPC 中心的既有专业知识以及新兴的欧洲量子生态系统,创建融合量子技术的世界领先的超级计算基础设施。这需要为量子硬件和软件开发以及教育提供专项和持续的资金。此外,协调努力和支持在学术界和工业界尽早采用量子计算至关重要。
摘要 — 量子计算将通过利用叠加、纠缠和干涉等量子力学效应,实现大规模并行算法的设计,从而以有效方式解决难题,从而彻底改变计算领域。这些计算改进可能会对模糊系统在诸如大数据等环境中的设计和使用方式产生重大影响,在这些环境中,计算效率是一个不可忽略的约束。为了为这一创新方案铺平道路,本文介绍了一种基于二次无约束二元优化 (QUBO) 问题的模糊集和运算符的新表示,以便在一种称为量子退火器的量子计算机上实现模糊推理引擎。
摘要 - 在本文中,我们提出了一种有效的方法,用于用于移动机器人实时无碰撞导航。通过将深度强化学习与模型预测控制整合在一起,我们的目的是实现避免碰撞和计算效率。该方法首先使用深度Q学习训练初步代理,从而使其能够为下一步步骤生成动作。不是执行这些动作,而是基于它们生成的参考轨迹,从而避免了原始参考路径上存在的障碍。随后,该局部轨迹被使用在MPC轨迹跟踪框架内,以为移动机器人提供无冲突的指南。实验结果表明,所提出的DQN-MPC混合方法在时间效率和解决方案质量方面优于纯MPC。
coimbatore。3 Wayanad苏丹·贝瑟里(Sultan Bathery)唐·博斯科学院(Don Bosco College)数学系助理教授。 抽象的梦立是人工智能中的一个新兴领域,旨在通过计算模型复制人类梦的经验。 本文比较了用于梦想生成的各种AI算法,评估其性能,创造力和计算效率。 我们探索生成的对抗网络(GAN),变化自动编码器(VAE)和基于变压器的模型,提供了对其优势和劣势的全面分析。 我们的结果表明,每个模型都有独特的优势,这表明了未来研究的潜在混合方法。 关键字:梦幻,AI,GAN,VAE,变形金刚,创造力,连贯性,计算效率,FID,IS,EEG信号。 I. 引言梦想已经迷住了人类已经有几个世纪了,通常被视为窗户进入潜意识的思想。 近年来,人工智能在创意领域取得了长足的进步,包括文本,图像和音乐的产生。 使用AI的梦幻发电试图模拟梦境的体验,创造出模仿人类梦的新颖而富有想象力的成果。 本文旨在比较该领域中领先的AI算法,重点是它们产生连贯和创造性的梦想的能力。 II。 文献综述A. Goodfellow等人引入的生成对抗网络(GAN),甘恩由两个神经网络组成,一个生成器和一个鉴别器,它们通过对抗过程同时训练。 iii。3 Wayanad苏丹·贝瑟里(Sultan Bathery)唐·博斯科学院(Don Bosco College)数学系助理教授。抽象的梦立是人工智能中的一个新兴领域,旨在通过计算模型复制人类梦的经验。本文比较了用于梦想生成的各种AI算法,评估其性能,创造力和计算效率。我们探索生成的对抗网络(GAN),变化自动编码器(VAE)和基于变压器的模型,提供了对其优势和劣势的全面分析。我们的结果表明,每个模型都有独特的优势,这表明了未来研究的潜在混合方法。关键字:梦幻,AI,GAN,VAE,变形金刚,创造力,连贯性,计算效率,FID,IS,EEG信号。I.引言梦想已经迷住了人类已经有几个世纪了,通常被视为窗户进入潜意识的思想。近年来,人工智能在创意领域取得了长足的进步,包括文本,图像和音乐的产生。使用AI的梦幻发电试图模拟梦境的体验,创造出模仿人类梦的新颖而富有想象力的成果。本文旨在比较该领域中领先的AI算法,重点是它们产生连贯和创造性的梦想的能力。II。 文献综述A. Goodfellow等人引入的生成对抗网络(GAN),甘恩由两个神经网络组成,一个生成器和一个鉴别器,它们通过对抗过程同时训练。 iii。II。文献综述A. Goodfellow等人引入的生成对抗网络(GAN),甘恩由两个神经网络组成,一个生成器和一个鉴别器,它们通过对抗过程同时训练。iii。gan已在图像生成,样式传输和创造性的创建中广泛使用[1]。B. Kingma和Welling提出的变异自动编码器(VAE)VAE是通过变异推断学习数据的基本分布的生成模型[2]。它们已应用于各种任务,包括图像和视频生成,提供了生成概率的方法。C.基于变压器的模型变压器,尤其是基于Vaswani等人引入的架构的变压器,已经彻底改变了自然语言处理。诸如GPT-3和DALL-E之类的模型利用变压器来生成具有显着连贯性和创造力的文本和图像[3]。方法论
摘要计算性能与功耗之间的平衡是计算系统中的关键限制,集成电路技术带有瓶颈。近似计算可以将准确性或误差方案的功率改善进行权衡。分裂具有很高的计算需求和延迟,是计算效率的瓶颈。我们提出了一个基于乘法性能的二次插值近似分隔线(QIAD),该分裂具有较高的统计性能。在TSMC 65NM过程中模拟和合成该设计,并根据图像颜色量化进行了测试,显示了使用诸如PSNR,MSE和SSIM等评估指标的最佳量化效果。关键词:近似计算,分隔线,硬件设计。分类:集成电路(逻辑)
在各种计算机视觉应用中,例如监视系统,自动驾驶汽车和环境监测,对象检测是非常重要的组件。为了进行有效的分析并做出正确的决策,至关重要的是,具有在田园环境中既准确又有效的对象识别方法,这些方法的特征是动物的存在和其他事物。这项研究的目的是通过利用颜色特征极限学习机(参见ELM)提出一种独特的方法来快速识别田园景观中的物体。为了在保持计算效率的同时达到较高的对象检测性能,CF-ELM将颜色特性与ELM算法相结合。如实验结果所证明的那样,所提出的方法在田园环境中检测对象是成功且有效的。