视觉和音频传感器处理目前主要由神经网络主导。与手工制作的特征提取/分类技术相比,这些技术更强大、更准确且更易于开发。它们的出现使大量应用程序成为可能,并开辟了新的市场和机会。我们专注于云边缘应用程序,尤其是实时人工智能,即从一个或多个传感器接收实时数据并快速响应环境变化、实时做出决策的应用程序。实时人工智能通常对时间(尤其是延迟)和功耗有严格的要求,因此无法卸载到云端。我们认为,处理实时人工智能神经网络的流行策略存在功率瓶颈,现有计算架构无法解决这一问题。NeuronFlow 通过采用神经形态工程的最新进展和数据流处理器的旧理念来弥补这一差距。最先进的视觉和音频传感器会生成大量时间采样数据。大多数市售视觉传感器都依赖于以等距(即周期性)时间间隔捕获完整图像(帧),而不管场景是否发生变化。此类传感器称为基于帧的。处理视觉传感器的算法通常遵循基于帧的结构,因为这既适合占主导地位的基于帧的传感器技术,也因为它能够重用单帧算法来处理帧序列,即,单个图片对象识别 DNN 可以逐帧应用于视频序列。因此,相同的无关背景对象会在帧之间被重复识别和分析。处理所有这些多余的数据会大大增加计算负荷,导致处理效率极低、耗电。如果图像传感的绝对计算要求满足,那么这不会是一个严重的问题
人工智能 (AI) 与计算机一样古老,可以追溯到 1945 年的 ENIAC (电子数字积分计算机)。“人工智能之父”约翰·麦卡锡在 1956 年他召集的达特茅斯会议上对人工智能进行了定义,他指出“学习的每个方面或智能的任何其他特征原则上都可以得到如此精确的描述,以至于可以让机器对其进行模拟。” 1958 年,他专门为人工智能开发了 LISP 语言。20 世纪 60 年代、70 年代和 80 年代见证了专家系统和一些自然语言系统的发展。20 世纪 90 年代,机器学习得到了发展。21 世纪的特色是大数据;2010 年代和 2020 年代是神经网络。神经网络理论是在 20 世纪 40 年代发展起来的,第一个神经网络是在 20 世纪 50 年代、60 年代和 70 年代设计的。反向传播训练是在 20 世纪 80 年代发展起来的,循环神经网络和卷积神经网络是在 20 世纪 90 年代和 21 世纪发展起来的,而生成对抗神经网络是在 2014 年发展起来的。2017 年,Vaswani 等人 1 提出了一种新的网络架构 Transformer,它使用了注意力机制,省去了循环和卷积机制,所需的计算量大大减少。这被称为自注意力神经网络。它允许将语句的分析分成几个部分,然后并行分析它们。这是自神经网络诞生以来唯一真正重大的创新,因为它显著减少了推理和训练的计算负荷。神经网络的功能与人脑相同,使用大脑神经元、树突、轴突和突触的数学等价物。计算机和大脑都使用电信号,但神经脉冲是通过电化学方式传输的,这比计算机中的纯电流慢得多。轴突被髓鞘隔离,髓鞘可以大大加快传输速度,大量髓鞘化可以使速度提高 100 倍。2 GPT-3 系统中的人工智能神经网络在 2023 年就已经拥有爱因斯坦的智商,到现在可能已经是人类的 1000 倍。3 神经网络的心理层面在 1993 年由 K. Anders Ericsson 等人在一部被广泛称为“10,000 小时参考”的作品中描述。这适用于任何类型的技能——演奏乐器、做数学、参加体育比赛。当然,那些出类拔萃的人确实练习了很多,但更重要的是深度思考。爱立信并不了解其中的机制。2005 年,R. Douglas Fields 提出了