Loading...
机构名称:
¥ 1.0

视觉和音频传感器处理目前主要由神经网络主导。与手工制作的特征提取/分类技术相比,这些技术更强大、更准确且更易于开发。它们的出现使大量应用程序成为可能,并开辟了新的市场和机会。我们专注于云边缘应用程序,尤其是实时人工智能,即从一个或多个传感器接收实时数据并快速响应环境变化、实时做出决策的应用程序。实时人工智能通常对时间(尤其是延迟)和功耗有严格的要求,因此无法卸载到云端。我们认为,处理实时人工智能神经网络的流行策略存在功率瓶颈,现有计算架构无法解决这一问题。NeuronFlow 通过采用神经形态工程的最新进展和数据流处理器的旧理念来弥补这一差距。最先进的视觉和音频传感器会生成大量时间采样数据。大多数市售视觉传感器都依赖于以等距(即周期性)时间间隔捕获完整图像(帧),而不管场景是否发生变化。此类传感器称为基于帧的。处理视觉传感器的算法通常遵循基于帧的结构,因为这既适合占主导地位的基于帧的传感器技术,也因为它能够重用单帧算法来处理帧序列,即,单个图片对象识别 DNN 可以逐帧应用于视频序列。因此,相同的无关背景对象会在帧之间被重复识别和分析。处理所有这些多余的数据会大大增加计算负荷,导致处理效率极低、耗电。如果图像传感的绝对计算要求满足,那么这不会是一个严重的问题

NeuronFlow:用于实时 AI 应用的神经形态处理器架构

NeuronFlow:用于实时 AI 应用的神经形态处理器架构PDF文件第1页

NeuronFlow:用于实时 AI 应用的神经形态处理器架构PDF文件第2页

NeuronFlow:用于实时 AI 应用的神经形态处理器架构PDF文件第3页

NeuronFlow:用于实时 AI 应用的神经形态处理器架构PDF文件第4页

NeuronFlow:用于实时 AI 应用的神经形态处理器架构PDF文件第5页

相关文件推荐