本文介绍了由印度理工学院孟买分校学生建造的微型卫星“Pratham”的姿态确定和控制子系统。学生卫星(如 Pratham)通常具有有限的传感、计算和通信能力,因此需要自主且计算效率高的算法。本文介绍了以最小计算负荷和无需任何地面支持即可实现所需指向精度的姿态确定和控制方法。三轴磁力计、六个 2-π 太阳传感器和一个单频 GPS 接收器用作机载传感器,使用单帧方法进行姿态确定。姿态控制器设计为使用三个正交磁力矩器实现 10 度的天底指向精度。通过涉及卫星环境、动力学、执行器和传感器模型的闭环仿真验证了算法的性能。最后,介绍了实时机载计算机在环仿真的初步结果。
摘要 — 肌电图 (EMG) 信号的数值模型为我们对人类神经生理学的基本理解做出了巨大贡献,并且仍然是运动神经科学和人机界面发展的核心支柱。然而,虽然基于有限元方法的现代生物物理模拟非常准确,但它们的计算成本极其昂贵,因此通常仅限于对静态系统(例如等长收缩肢体)进行建模。为了解决这个问题,我们提出了一种迁移学习方法,其中训练条件生成模型来模仿高级数值模型的输出。为此,我们提出了 BioMime,这是一种经过对抗训练的条件生成神经网络,可在各种体积导体参数下生成运动单元激活电位波形。我们展示了这种模型能够以高精度在数量少得多的数值模型输出之间进行预测插值的能力。因此,计算负荷大大减少,从而可以在真正动态和自然的运动过程中快速模拟 EMG 信号。
在嵌入式系统在电动汽车、医疗保健、工业或基础设施监控等关键领域发挥越来越重要作用的时代,对实时数据处理的需求至关重要。本文讨论了这些应用中高传感器数据速率和微控制器 (MCU) 有限处理能力所带来的挑战。它介绍了一种利用串行铁电 RAM (FeRAM) 架构以及计算 SRAM 概念的新型计算方法,称为就地计算 (CIP)。对 CIP 串行 FeRAM 的探索揭示了其在高吞吐量处理大量传感器数据时提高可预测性、能源效率和安全性的潜力。与传统计算架构不同,CIP 串行 FeRAM 通过在内存中启用计算任务,减轻了 MCU 的计算负荷、降低了延迟并提高了能源效率。本文强调了 CIP 串行 FeRAM 对各种实时任务的灵活性,为更高性能、更高效和适应性更强的关键嵌入式系统铺平了道路。
大型语言模型 (LLM) 极大地推进了自然语言处理范式。然而,高计算负荷和巨大的模型大小对在边缘设备上的部署提出了巨大挑战。为此,我们为 LLM 提出了 APTQ(注意感知训练后混合精度量化),它不仅考虑了每层权重的二阶信息,而且首次考虑了注意输出对整个模型的非线性影响。我们利用 Hessian 迹作为混合精度量化的敏感度指标,确保在保留模型性能的情况下进行明智的精度降低。实验表明,APTQ 超越了之前的量化方法,在 C4 数据集中实现了平均 4 位宽度和 5.22 困惑度,几乎相当于全精度。此外,APTQ 在 LLaMa-7B 和 LLaMa-13B 中分别以平均 3.8 的位宽实现了 68.24% 和 70.48% 的最佳零样本准确率,证明了其生成高质量量化 LLM 的有效性。
摘要:目的:本研究旨在评估各种降维方法(包括主成分分析 (PCA)、拉普拉斯评分和卡方特征选择)对脑电图 (EEG) 数据集分类性能的影响。方法:我们应用了降维技术,包括 PCA、拉普拉斯评分和卡方特征选择,并使用线性回归、K 最近邻 (KNN) 和朴素贝叶斯分类器评估了它们对 EEG 数据分类性能的影响。对模型的分类准确性和计算效率进行了评估。结果:我们的研究结果表明,所有降维策略通常都能提高或保持分类准确性,同时减少计算负荷。值得注意的是,PCA 和 Autofeat 技术可提高模型的准确性。结论:使用降维技术可以通过减少计算需求而不影响准确性来增强 EEG 数据分类。这些结果表明,这些技术有可能应用于既需要计算效率又需要高精度的场景。本研究中使用的代码可在https://github.com/movahedso/Emotion-analysis找到。
摘要:在实时闭环设置中使用脑电图 (EEG) 评估瞬时大脑状态是一个技术难题,因为需要预测未来信号来定义当前状态,例如瞬时相位和幅度。为了实时实现这一点,人们使用了传统的基于 Yule-Walker (YW) 的自回归 (AR) 模型。然而,采用自适应方法的闭环系统实时实现大脑状态相关的方法尚未被探索。我们的主要目的是研究使用基于自适应最小均方 (LMS) 的 AR 模型进行时间序列前向预测是否可以在实时闭环系统中实现。EEG 状态相关触发器与睁眼静息状态和视觉任务中的 EEG α 振荡峰值和谷值同步。对于静息和视觉条件,统计结果表明,所提出的方法成功地为所有参与者在 EEG 振荡的特定阶段提供触发器。这些单独的结果表明,基于 LMS 的 AR 模型已成功应用于针对特定 alpha 振荡阶段的实时闭环系统,并且可以用作传统和机器学习方法的自适应替代方案,且计算负荷较低。
无人机在民用领域的应用越来越广泛。四轴飞行器是一种经过广泛研究的无人机,是新型控制技术的绝佳试验台。四轴飞行器的一些预期用途需要在受限环境中运行,其中物体靠近飞行器。在这些条件下,飞行会受到空气动力学相互作用(力和扭矩)的影响。直观地讲,这些相互作用可以看作是气流从周围环境中反弹回飞行器。由于现有的精确模型需要大量的计算负荷,并且不能用于四旋翼飞行器的实时控制回路,因此开发用于描述此类相互作用的有效计算方法仍有待改进。本研究假设,通过一个可以实时部署并近似气动相互作用行为的简化数学模型,可以改善四旋翼飞行器的飞行控制。为了证实这一假设,我们的目标是开发一种有效的气动相互作用模型,该模型可以从模拟和实验数据中检索。为解决这个问题,我们将探索三个主要知识领域:控制理论、人工智能和流体力学。作为初步进展,我们提出了非线性四旋翼控制的数值优化技术。
针对供电可靠性模型中风电和负荷的不确定性,提出一种结合风电发电和储能系统的区间可靠性评估方法。首先,建立基于区间变量的区间供电可靠性评估模型,该模型属于区间混合整数规划(IMIP)。其次,利用区间数的可能度理论,将IMIP模型转化为2种极端情况下的确定性优化模型,在考虑风电区间满足负荷需求区间的情况下,通过储能和发电机的出力优化,寻求最大供电概率,即减负荷上界最小。最后,基于序贯蒙特卡罗模拟生成风电机组和发电机的状态,通过计算负荷期望损失、期望未供电能量和最大供电概率来评估混合能源发电系统的可靠性,为建立储能区间优化配置模型提供依据。利用IEEE RTS-24测试系统验证所提方法的性能,并利用CPLEX 12.7求解器对模型进行求解,仿真结果证明了所提方法的有效性和适用性。
无人机在民用领域的应用越来越广泛。四轴飞行器是一种经过广泛研究的无人机,是新型控制技术的绝佳试验台。四轴飞行器的一些预期用途需要在受限环境中运行,其中物体与飞行器距离很近。在这些条件下,飞行会受到气动相互作用(力和扭矩)的影响。直观地讲,这些相互作用可以看作是气流从周围环境中反弹回飞行器。开发用于描述此类相互作用的有效计算方法仍有待改进,因为现有的精确模型需要大量的计算负荷,并且不能用于四旋翼飞行器的实时控制回路。这项研究假设,使用一个可以实时部署并近似气动相互作用行为的简化数学模型,可以改善四旋翼飞行器的飞行控制。为了证实这一假设,我们的目标是开发一种有效的气动相互作用模型,该模型可以从模拟和实验数据中检索出来。为解决这个问题,我们将探索三个主要知识领域:控制理论、人工智能和流体力学。作为初步进展,我们提出了非线性四旋翼控制的数值优化技术。
摘要:准确识别人类的情绪状态对于高效的人机交互 (HRI) 至关重要。因此,我们见证了人们在开发基于各种生物信号的稳健且准确的脑机接口模型方面所做的大量研究。特别是,先前的研究表明,脑电图 (EEG) 可以深入了解情绪状态。最近,研究人员提出了各种手工制作的深度神经网络 (DNN) 模型来提取与情绪相关的特征,这些模型对噪声的鲁棒性有限,从而导致精度降低和计算复杂度增加。迄今为止开发的 DNN 模型被证明可有效提取与情绪分类相关的稳健特征;然而,它们巨大的特征维数问题导致了高计算负荷。在本文中,我们提出了一个混合深度特征袋 (BoHDF) 提取模型,用于将 EEG 信号分类到各自的情绪类别中。通过在特征提取阶段之前将 EEG 信号转换为 2D 频谱图,BoHDF 的不变性和鲁棒性得到进一步增强。这种时频表示与 EEG 模式的时变行为非常吻合。在这里,我们建议将 GoogLeNet 全连接层(最简单的 DNN 模型之一)的深度特征与我们最近开发的基于纹理的 OMTLBP_SMC 特征相结合,然后使用 K 最近邻 (KNN) 聚类算法。在 DEAP 和 SEED 数据库上进行评估时,所提出的模型分别实现了 93.83% 和 96.95% 的识别准确率。使用所提出的基于 BoHDF 的算法的实验结果显示,与之前报道的具有类似设置的工作相比,性能有所提高。