Loading...
机构名称:
¥ 1.0

摘要:在实时闭环设置中使用脑电图 (EEG) 评估瞬时大脑状态是一个技术难题,因为需要预测未来信号来定义当前状态,例如瞬时相位和幅度。为了实时实现这一点,人们使用了传统的基于 Yule-Walker (YW) 的自回归 (AR) 模型。然而,采用自适应方法的闭环系统实时实现大脑状态相关的方法尚未被探索。我们的主要目的是研究使用基于自适应最小均方 (LMS) 的 AR 模型进行时间序列前向预测是否可以在实时闭环系统中实现。EEG 状态相关触发器与睁眼静息状态和视觉任务中的 EEG α 振荡峰值和谷值同步。对于静息和视觉条件,统计结果表明,所提出的方法成功地为所有参与者在 EEG 振荡的特定阶段提供触发器。这些单独的结果表明,基于 LMS 的 AR 模型已成功应用于针对特定 alpha 振荡阶段的实时闭环系统,并且可以用作传统和机器学习方法的自适应替代方案,且计算负荷较低。

脑电图振荡相位的实时实现......

脑电图振荡相位的实时实现......PDF文件第1页

脑电图振荡相位的实时实现......PDF文件第2页

脑电图振荡相位的实时实现......PDF文件第3页

脑电图振荡相位的实时实现......PDF文件第4页

脑电图振荡相位的实时实现......PDF文件第5页

相关文件推荐