在脑电图 (EEG) 记录中,不同受试者之间和同一受试者内随时间推移都存在普遍且难以捉摸的受试者间和受试者内变异性 ( Saha and Baumert , 2020 )。受试者间变异性可归因于年龄、性别和生活习惯等因素,这些因素与大脑地形和电生理有关 ( Seghier et al. , 2004 ; Herzfeld and Shadmehr , 2014 ; Wu et al. , 2014 ; Seghier and Price , 2018 ; Antonakakis et al. , 2020 )。受试者内部的变异性可以解释为心理和生理的变化,例如疲劳、放松和注意力(Smith 等人,2005 年;Meyer 等人,2013 年;Nishimoto 等人,2020 年;Trinh 等人,2021 年;Hu 等人,2022 年)。受试者间和受试者内部的变异性对基于 EEG 的脑机接口 (BCI) 领域构成了重大挑战(Ray 等人,2015 年;Saha 等人,2017 年;Lee 等人,2019 年;Chikara 和 Ko,2020 年;Wei 等人,2021 年;Huang 等人,2022 年)。通过检测感觉运动节律 (SMR) 中的事件相关去同步/同步 (ERD/ERS),基于运动想象的 BCI (MI-BCI) 已被提出用于神经康复应用,范围从运动障碍、严重肌肉疾病和瘫痪患者到肢体运动恢复 (Wolpaw and Wolpaw, 2012; Mane et al., 2020)。然而,来自某个受试者的训练有素的 BCI 模型不能直接应用于另一个受试者。此外,先前的研究表明 BCI 效率低下的问题,有 10% 到 50% 的用户无法操作 MI-BCI 系统 (Vidaurre and Blankertz, 2010; Liu et al., 2020)。即使是对同一受试者,BCI 系统的性能也会随着时间的推移而下降。受试者间和受试者内变异性的存在导致传统机器学习泛化能力的下降,从而限制了MI-BCI的实用化应用(Ahn and Jun,2015;Saha等,2017)。在传统机器学习框架下,训练集和测试集需要独立同分布(IID)(Duda and Hart,2006)。然而,受试者间和受试者内的变异性使得IID条件假设不再成立。通过放宽IID假设的限制要求,迁移学习被认为是一种有效的方法,可以提高模型对受试者间和受试者内变异性的可重用性和泛化能力(Jayaram等,2016;Pan,2020)。已经提出了一系列方法将知识从源域迁移到目标域。不变表示的目的是寻找跨不同会话或主题的不变学习模型,例如正则化公共空间模式 (CSP) 和不变 CSP (Blankertz 等,2007;Cheng 等,2017;Xu 等,2019)。随着深度学习技术的发展,领域自适应方法已经提出并几乎完全主导了 BCI 应用领域(Li 等人,2010 年;Liu 等人,2012 年;Samek 等人,2013 年;Fukunaga,2013 年;Dagaev 等人,2017 年;Azab 等人,2019 年;Hong 等人,2021 年)。一些端到端优势和更强的特征学习能力受到了越来越多的关注(Autthasan 等人,2021 年)。虽然受试者间和受试者内的变异性对实际应用的挑战已逐渐被注意到,并且迁移学习可以在一定程度上弥补性能下降,但对受试者间和受试者内变异性的理解仍然有限。大多数研究人员将受试者间和受试者内的变异性视为类似类型的问题( Jayaram 等人,2016 年)。虽然受试者间和受试者内的变异性都会导致
主要关键词