Loading...
机构名称:
¥ 3.0

由于记录过程繁琐,脑电图 (EEG) 数据集通常较小且维数较高。在这种情况下,强大的机器学习技术对于处理大量信息和克服维数灾难至关重要。人工神经网络 (ANN) 在基于 EEG 的脑机接口 (BCI) 应用中取得了良好的效果,但它们涉及计算密集型的训练算法和超参数优化方法。因此,虽然质量与成本之间的权衡通常被忽视,但意识到这一点却大有裨益。在本文中,我们将基于遗传算法的超参数优化程序应用于卷积神经网络 (CNN)、前馈神经网络 (FFNN) 和循环神经网络 (RNN),所有这些网络都是故意浅显的。我们比较了它们的相对质量和能量时间成本,但我们也分析了具有相似精度的同类型网络的结构复杂性的变化。实验结果表明,优化过程提高了所有模型的准确率,并且只有一个隐藏卷积层的 CNN 模型可以与 6 层深度信念网络相等或略胜一筹。FFNN 和 RNN 无法达到相同的质量,尽管成本明显较低。结果还强调了这样一个事实,即同一类型网络的大小不一定与准确率相关,因为较小的模型在性能上可以匹敌甚至超越较大的模型。在这方面,过度拟合可能是一个促成因素,因为深度学习方法在有限的训练示例下会遇到困难。

基于脑电图的运动想象分类的深度学习

基于脑电图的运动想象分类的深度学习PDF文件第1页

基于脑电图的运动想象分类的深度学习PDF文件第2页

基于脑电图的运动想象分类的深度学习PDF文件第3页

基于脑电图的运动想象分类的深度学习PDF文件第4页

基于脑电图的运动想象分类的深度学习PDF文件第5页

相关文件推荐

2025 年
¥18.0