摘要 — 生成对抗网络 (GAN) 在语音处理等领域的时间序列数据生成方面取得了重要进展。GAN 的这种能力对于脑机接口 (BCI) 非常有用,因为收集大量样本可能既昂贵又耗时。为了解决这个问题,本文提出了一种为运动想象生成人工脑电图 (EEG) 数据的新方法。这里的 GAN 使用由双向长短期记忆神经元组成的生成器和鉴别器网络。使用来自 BCI 竞赛 IV 的数据集 2b 评估训练后的模型。该数据集包括左手和右手运动想象的试验。训练单独的 GAN 以生成与数据集中存在的两种试验类型相对应的人工 EEG 样本。为了进行评估,使用短期傅里叶变换和 Welch 功率谱密度比较真实和人工 EEG 信号的时频特性。结果表明,GAN 可以捕捉运动想象脑电图数据的重要特征,例如 beta 波段的功率变化。从 Welch 的功率谱密度来看,人工生成信号和原始信号的功率变化处于相似的频率区间。
主要关键词