摘要 简介:中风是全世界发病和死亡的主要原因。虽然脑电图 (EEG) 提供了有关中风后大脑活动的宝贵数据,但定性 EEG 评估可能会被误解。因此,我们研究了定量 EEG (qEEG) 识别可作为中风患者潜在电生理生物标志物的关键波段频率的潜力。材料和方法:进行了一项单中心病例对照研究,其中招募了中风入院患者和健康对照者,并征得其同意。中风患者在入院后 48 小时内进行 EEG 测试,而对照者在门诊评估期间进行 EEG 测试。对 EEG 信号进行预处理,使用 MATLAB 分析其频谱功率,并绘制为地形图。结果:共纳入 194 名参与者,分为缺血性中风患者和对照者。我们研究队列的平均年龄为 55.11 岁(SD±13.12),美国国立卫生研究院卒中量表 (NIHSS) 评分中位数为 6(IQR 4-6),腔隙性卒中是最常见的亚型 (49.5%)。频谱分析,以及随后的脑地形图映射,突出显示了 β、α 和 γ 波段内重要通道的聚集。结论:qEEG 分析确定了卒中后患者感兴趣的重要波段频率,表明其可作为诊断和预后工具。脑地形图映射提供了精确的表示,可以指导干预和康复策略。未来的研究应探索使用机器学习进行卒中检测并提供个性化治疗。关键词:定量脑电图、qEEG、卒中、频谱脑电图、地形介绍卒中是一种异质性疾病,以各种血管、血流动力学和全身异常为特征。根据 2017 年全球疾病、伤害和风险因素负担研究,它是全球第二大死亡原因和第三大残疾原因
主要关键词