对成像数据的及时分析对于缺血性中风的情况下,对于适当治疗策略的诊断和决策至关重要。已经为取消计算机辅助系统做出了各种努力,以提高中风诊断和急性中风分流的准确性。人工智能技术的广泛出现已纳入医学领域。人工智能可以在为中风患者提供护理方面发挥重要作用。在过去的几十年中,许多研究探讨了机器学习和深度学习算法在中风管理中的应用。In this review, we will start with a brief introduction to ma- chine learning and deep learning and provide clinical applications of machine learning and deep learning in various aspects of stroke management, including rapid diagnosis and improved triage, identifying large vessel occlusion, predicting time from stroke on- set, automated ASPECTS (Alberta Stroke Program Early CT Score) measurement, lesion segmentation, and predicting treatment outcome.这项工作的重点是提供当前人工智能技术在包括MRI和CT在内的缺血性中风成像中的应用。
主要关键词