Loading...
机构名称:
¥ 1.0

本文综述了当前人工智能在缺血性卒中影像学应用的研究进展,分析了主要挑战,并探讨了未来的研究方向。本研究强调了人工智能在梗塞区域自动分割、大血管闭塞检测、卒中结局预测、出血性转化风险评估、缺血性卒中复发风险预测、侧支循环自动分级等领域的应用。研究表明,机器学习(ML)和深度学习(DL)技术在提高诊断准确性、加速疾病识别、预测疾病进展和治疗反应方面具有巨大潜力。但这些技术的临床应用仍然面临数据量限制、模型可解释性、实时监测和更新需求等挑战。此外,本文讨论了 Transformer 架构等大型语言模型在缺血性卒中影像学分析中的应用前景,强调建立大型公共数据库的重要性,未来研究需要关注算法的可解释性和临床决策支持的全面性。总体而言,人工智能在缺血性中风管理中具有重要的应用价值;但必须克服现有的技术和实践挑战才能实现其在临床实践中的广泛应用。

缺血性中风图像中的人工智能

缺血性中风图像中的人工智能PDF文件第1页

缺血性中风图像中的人工智能PDF文件第2页

缺血性中风图像中的人工智能PDF文件第3页

缺血性中风图像中的人工智能PDF文件第4页

缺血性中风图像中的人工智能PDF文件第5页