Loading...
机构名称:
¥ 1.0

摘要:准确识别人类的情绪状态对于高效的人机交互 (HRI) 至关重要。因此,我们见证了人们在开发基于各种生物信号的稳健且准确的脑机接口模型方面所做的大量研究。特别是,先前的研究表明,脑电图 (EEG) 可以深入了解情绪状态。最近,研究人员提出了各种手工制作的深度神经网络 (DNN) 模型来提取与情绪相关的特征,这些模型对噪声的鲁棒性有限,从而导致精度降低和计算复杂度增加。迄今为止开发的 DNN 模型被证明可有效提取与情绪分类相关的稳健特征;然而,它们巨大的特征维数问题导致了高计算负荷。在本文中,我们提出了一个混合深度特征袋 (BoHDF) 提取模型,用于将 EEG 信号分类到各自的情绪类别中。通过在特征提取阶段之前将 EEG 信号转换为 2D 频谱图,BoHDF 的不变性和鲁棒性得到进一步增强。这种时频表示与 EEG 模式的时变行为非常吻合。在这里,我们建议将 GoogLeNet 全连接层(最简单的 DNN 模型之一)的深度特征与我们最近开发的基于纹理的 OMTLBP_SMC 特征相结合,然后使用 K 最近邻 (KNN) 聚类算法。在 DEAP 和 SEED 数据库上进行评估时,所提出的模型分别实现了 93.83% 和 96.95% 的识别准确率。使用所提出的基于 BoHDF 的算法的实验结果显示,与之前报道的具有类似设置的工作相比,性能有所提高。

一种受人工智能启发的用于脑电图的时空神经网络......

一种受人工智能启发的用于脑电图的时空神经网络......PDF文件第1页

一种受人工智能启发的用于脑电图的时空神经网络......PDF文件第2页

一种受人工智能启发的用于脑电图的时空神经网络......PDF文件第3页

一种受人工智能启发的用于脑电图的时空神经网络......PDF文件第4页

一种受人工智能启发的用于脑电图的时空神经网络......PDF文件第5页

相关文件推荐