脑电图(EEG)信号已被广泛用于诊断脑疾病,例如癫痫,帕金森氏病(PD),多重SKLEROZ(MS),并且已经提出了许多机器学习方法来开发使用EEG信号的自动疾病诊断方法。在这种方法中,提出了一种多级机器学习方法来诊断癫痫病。提出的多级EEG分类方法包括预处理,特征提取,特征串联,特征选择和分类阶段。为了创建水平,选择可调Q小波变换(TQWT),并通过在预处理中使用TQWT来计算25个频率系数子频段。在特征提取阶段,四核对称模式(QSP)作为特征提取器选择,并从RAW EEG信号和提取的25个子带中提取256个特征。在特征选择阶段,使用邻居组成分析(NCA)。在此阶段选择了128、256、512和1024最重要的特征。在分类阶段,K最近的邻居(KNN)分类被用作分类。使用BONN EEG数据集对七种情况进行了建议的方法。提出的方法在5个类案例中达到了98.4%的成功率。因此,我们提出的方法可以在较大的数据集中使用,以进行更多验证。
摘要:脑电图(EEG)是一个复杂的生物选择信号。分析可以为搜索者提供有用的生理信息。为了识别和分类EEG信号,提出了一种使用改进的松鼠搜索算法(ISSA)来优化支持向量机(SVM)的模式识别方法。预处理EEG信号,其时域特征将被提取并针对SVM作为分类和识别的特征向量。在本文中,良好点集的方法用于初始化人口位置,混乱和反向学习机制被引入算法中。使用基准功能进行了改进的松鼠算法(ISSA)的性能测试。从结果的统计分析可以看出,算法的勘探能力和收敛速度可以提高。然后将其用于优化SVM参数。ISSA-SVM模型是为EEG信号的分类而建立的。对于数据集,该方法的平均分类为85.9%。此结果比比较方法提高了2-5%。
在本文中,使用支持向量机(SVM)设计了一个分类器来对肌电图(EMG)信号进行分类。鉴于EMG信号,基于SVM的分类器旨在将十个单独的手指运动命令分类为预定义的运动之一。在分类之前,将EMG数据用DWT(例如平均绝对值(MAV),均方根(RMS)和SD提取,并将每个窗口提取并组合到功能集。提取的特征用作分类系统的输入。线性SVM(单位方法)用于EMG信号的多类分类。DWT大小。还报告了确保手指运动之间最大歧视的最佳功能集。验证表明,支持向量机可以正确分类EMG信号,更高的分类精度为91.7%,适用于为建议的方法设计。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
波兰摘要:虚拟现实(VR)与近乎实时的EEG信号处理相结合,可以用作已经存在的康复技术的补充,使从业者和治疗师可以与患者一起将自己浸入虚拟环境中。这项研究的目的是提出一个分类模型以及所有预处理和特征提取步骤,这将能够在保持接近实时的性能的同时产生令人满意的结果。在脑电图信号数据集上测试了所提出的解决方案,该数据集包含52个受试者执行的左/右手运动成像运动实验。在测试和训练阶段,使用精度得分和执行时间来测量不同模型的性能。总之,鉴于潜在的患者康复程序的要求,提出了一种模型。关键字:实时脑电图分析,虚拟现实,CSP过滤,运动图像。©2022StanisławZakrzewski,BartłomiejStasiak,Tomasz Klepaczka和Adam
摘要:运动想象作为自发性脑机接口的重要范式,被广泛应用于神经康复、机器人控制等领域。近年来,研究者提出了多种基于运动想象信号的特征提取和分类方法,其中基于深度神经网络(DNN)的解码模型在运动想象信号处理领域引起了广泛关注。由于对受试者和实验环境的严格要求,收集大规模高质量的脑电图(EEG)数据非常困难,而深度学习模型的性能直接取决于数据集的大小。因此,基于DNN的MI-EEG信号解码在实践中被证明是非常具有挑战性的。基于此,我们研究了不同的数据增强(DA)方法在使用DNN对运动想象数据进行分类的性能。首先,我们使用短时傅里叶变换(STFT)将时间序列信号转换为频谱图像。然后,我们评估并比较了不同 DA 方法对该频谱图数据的性能。接下来,我们开发了一个卷积神经网络(CNN)来对 MI 信号进行分类,并比较了 DA 后的分类性能。使用 Frechet 初始距离(FID)评估生成数据(GD)的质量和分类准确率,使用平均 kappa 值探索最佳的 CNN-DA 方法。此外,使用方差分析(ANOVA)和配对 t 检验来评估结果的显著性。结果表明,深度卷积生成对抗网络(DCGAN)比传统 DA 方法:几何变换(GT)、自动编码器(AE)和变分自动编码器(VAE)提供了更好的增强性能(p < 0.01)。使用 BCI 竞赛 IV(数据集 1 和 2b)的公共数据集来验证分类性能。经过 DA 后,两个数据集的分类准确率分别提高了 17% 和 21%(p < 0.01)。此外,混合网络 CNN-DCGAN 的表现优于其他分类方法,两个数据集的平均 kappa 值分别为 0.564 和 0.677。
脑电图 (EEG) 信号包含有关大脑电活动的重要信息,被广泛用于辅助癫痫分析。癫痫诊断中一个具有挑战性的要素,即对不同癫痫状态的准确分类,尤其令人感兴趣并得到了广泛的研究。本文提出了一种基于深度学习的新型分类方法,即癫痫脑电信号分类 (EESC)。该方法首先将癫痫脑电信号转换为功率谱密度能量图 (PSDED),然后应用深度卷积神经网络 (DCNN) 和迁移学习从 PSDED 中自动提取特征,最后对四类癫痫状态进行分类 (发作间期、发作前持续时间至 30 分钟、发作前持续时间至 10 分钟和癫痫发作)。它在准确性和效率方面优于现有的癫痫分类方法。例如,在 CHB-MIT 癫痫脑电图数据的案例研究中,它实现了超过 90% 的平均分类准确率。
可穿戴设备通常用于诊断心律不齐,但是心电图(ECG)监测过程会产生大量数据,这会影响检测速度和准确性。为了解决此问题,许多研究已将深层压缩传感(DCS)技术应用于ECG监测,这些技术可以不足采样和重建ECG信号,从而极大地优化了诊断过程,但是重建过程很复杂且昂贵。在本文中,我们为深度压缩感测模型提出了改进的分类方案。该框架由四个模块组成:预审查;压缩;和分类。首先,在三个卷积层中适应归一化的ECG信号,然后将压缩数据直接放入分类网络中,以获得四种ECG信号的结果。我们在MIT-BIH心律失常数据库和Ali Cloud Tianchi ECG信号数据库上进行了实验,以验证模型的鲁棒性,采用准确性,精确,灵敏度和F1得分作为评估指标。当压缩比(CR)为0.2时,我们的模型具有98.16%的准确性,平均准确度为98.28%,灵敏度为98.09%和98.06%的F1得分,所有这些得分都比其他模型更好。
基于脑电图(EEG)的电动机象征分类是最受欢迎的大脑计算机Interface(BCI)研究领域之一,由于其可移植性和低成本。在本文中,我们比较了基于小波的能量熵的不同预测模型,并经验证明,基于时间窗口的运动图像分类中基于时间窗口的方法可提供比流行的滤纸方法更一致,更好的结果。为了检查所提出方法的鲁棒性和稳定性,我们最终还采用了多种类型的分类器,发现混合击打(带有多种学习者的包装集合学习)技术超出了其他经常使用的分类者。在我们的研究中,BCI竞争II数据集III已与四个实验设置一起使用:(a)整个信号(对于每个试验)为一个部分,(b)(b)整个信号(b)整个信号(对于每个试验)被分为非重叠片段,(c)每个试验的整个信号(c)每个试验(对于每个试验)分为重叠的段(以及(d)段(dis),以及(d),以及(d),以及(d),以及(d),以及(d),以及(d),以及(d),以及(d)。乐队。从实验获得的结果(c),即91。43%的分类准确性不仅超过了本文其他方法的表现,而且据我们所知,这是迄今为止该数据集的最高性能。
摘要 — 神经形态计算是一个令人兴奋且发展迅速的领域,旨在创建能够复制人类大脑复杂动态行为的计算系统。有机电化学晶体管 (OECT) 因其独特的生物电子特性而成为开发此类系统的有前途的工具。在本文中,我们提出了一种使用 OECT 阵列进行信号分类的新方法,该方法表现出类似于通过全局介质连接的神经元和突触的多功能生物电子功能。我们的方法利用 OECT 的固有设备可变性来创建具有可变神经元时间常数和突触强度的储存器网络。我们通过将表面肌电图 (sEMG) 信号分为三个手势类别来证明我们方法的有效性。OECT 阵列通过多个门馈送信号并测量对具有全局液体介质的一组 OECT 的响应来执行有效的信号采集。我们比较了在有和没有将输入投射到 OECT 上的情况下我们的方法的性能,并观察到分类准确率显著提高,从 40% 提高到 68%。我们还研究了不同的选择策略和使用的 OECT 数量对分类性能的影响。最后,我们开发了一种基于脉冲神经网络的模拟,该模拟模仿了 OECT 阵列,并发现基于 OECT 的分类与基于脉冲神经网络的方法相当。我们的工作为下一代低功耗、实时和智能生物医学传感系统铺平了道路。