及早发现患者生物信号中的恶性模式可以挽救数百万人的生命。尽管基于人工智能的技术在稳步改进,但这些方法的实际临床应用大多局限于对患者数据的离线评估。先前的研究已将有机电化学器件确定为生物信号监测的理想候选。然而,它们在实时模式识别中的应用从未得到证实。在这里,我们制作并表征了由有机电化学晶体管组成的受大脑启发的网络,并使用储层计算方法将它们用于时间序列预测和分类任务。为了展示它们在生物流体监测和生物信号分析中的潜在用途,我们对四类心律失常心跳进行了分类,准确率为 88%。这项研究的结果为生物相容性计算平台引入了一种以前未探索过的范例,并可能有助于开发能够与体液和生物组织相互作用的超低功耗硬件人工神经网络。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2021年3月25日。 https://doi.org/10.1101/2021.03.24.436722 doi:biorxiv preprint
摘要:脑电图(EEG)是一个复杂的生物选择信号。分析可以为搜索者提供有用的生理信息。为了识别和分类EEG信号,提出了一种使用改进的松鼠搜索算法(ISSA)来优化支持向量机(SVM)的模式识别方法。预处理EEG信号,其时域特征将被提取并针对SVM作为分类和识别的特征向量。在本文中,良好点集的方法用于初始化人口位置,混乱和反向学习机制被引入算法中。使用基准功能进行了改进的松鼠算法(ISSA)的性能测试。从结果的统计分析可以看出,算法的勘探能力和收敛速度可以提高。然后将其用于优化SVM参数。ISSA-SVM模型是为EEG信号的分类而建立的。对于数据集,该方法的平均分类为85.9%。此结果比比较方法提高了2-5%。
摘要:由于信噪比低且通常存在来自不同来源的伪影,脑电图 (EEG) 信号分类是一项具有挑战性的任务。之前已经提出了不同的分类技术,这些技术通常基于从 EEG 频带功率分布图中提取的一组预定义特征。然而,EEG 的分类仍然是一个挑战,这取决于实验条件和要捕获的反应。在这种情况下,深度神经网络的使用提供了新的机会来提高分类性能,而无需使用一组预定义的特征。然而,深度学习架构包含大量超参数,模型的性能依赖于这些超参数。在本文中,我们提出了一种优化深度学习模型的方法,不仅是超参数,还有它们的结构,该方法能够提出由不同层组合组成的不同架构的解决方案。实验结果证实,通过我们的方法优化的深度架构优于基线方法,并产生计算效率高的模型。此外,我们证明优化的架构相对于基线模型提高了能源效率。
在临床诊断中高度要求从脑部计算机界面(BCI)系统进行语音图像脑电图(EEG)信号的准确和自动分类。设计自动分类系统的关键因素是从原始输入中提取基本特征;尽管许多方法在该领域取得了巨大的成功,但它们可能无法处理来自不同接收领域的多尺度表示形式,因此阻碍了该模型获得更高的性能。为了应对这一挑战,在本文中,我们提出了一个新型的动态多尺度网络,以实现EEG信号分类。整个分类网络基于Resnet,输入信号首先通过短时傅立叶变换(STFT)编码特征;然后,为了进一步提高多尺度的特征提取能力,我们结合了动态多尺度(DMS)层,该层使网络可以从更精细的水平上学习来自不同接收场的多尺度特征。为了验证我们设计的网络的有效性,我们在BCI竞争II的公共数据集III上进行了广泛的实验,实验结果表明,我们提出的动态多尺度网络可以在此任务中实现有希望的分类性能。
摘要:运动想象作为自发性脑机接口的重要范式,被广泛应用于神经康复、机器人控制等领域。近年来,研究者提出了多种基于运动想象信号的特征提取和分类方法,其中基于深度神经网络(DNN)的解码模型在运动想象信号处理领域引起了广泛关注。由于对受试者和实验环境的严格要求,收集大规模高质量的脑电图(EEG)数据非常困难,而深度学习模型的性能直接取决于数据集的大小。因此,基于DNN的MI-EEG信号解码在实践中被证明是非常具有挑战性的。基于此,我们研究了不同的数据增强(DA)方法在使用DNN对运动想象数据进行分类的性能。首先,我们使用短时傅里叶变换(STFT)将时间序列信号转换为频谱图像。然后,我们评估并比较了不同 DA 方法对该频谱图数据的性能。接下来,我们开发了一个卷积神经网络(CNN)来对 MI 信号进行分类,并比较了 DA 后的分类性能。使用 Frechet 初始距离(FID)评估生成数据(GD)的质量和分类准确率,使用平均 kappa 值探索最佳的 CNN-DA 方法。此外,使用方差分析(ANOVA)和配对 t 检验来评估结果的显著性。结果表明,深度卷积生成对抗网络(DCGAN)比传统 DA 方法:几何变换(GT)、自动编码器(AE)和变分自动编码器(VAE)提供了更好的增强性能(p < 0.01)。使用 BCI 竞赛 IV(数据集 1 和 2b)的公共数据集来验证分类性能。经过 DA 后,两个数据集的分类准确率分别提高了 17% 和 21%(p < 0.01)。此外,混合网络 CNN-DCGAN 的表现优于其他分类方法,两个数据集的平均 kappa 值分别为 0.564 和 0.677。
脑电图 (EEG) 信号包含有关大脑电活动的重要信息,被广泛用于辅助癫痫分析。癫痫诊断中一个具有挑战性的要素,即对不同癫痫状态的准确分类,尤其令人感兴趣并得到了广泛的研究。本文提出了一种基于深度学习的新型分类方法,即癫痫脑电信号分类 (EESC)。该方法首先将癫痫脑电信号转换为功率谱密度能量图 (PSDED),然后应用深度卷积神经网络 (DCNN) 和迁移学习从 PSDED 中自动提取特征,最后对四类癫痫状态进行分类 (发作间期、发作前持续时间至 30 分钟、发作前持续时间至 10 分钟和癫痫发作)。它在准确性和效率方面优于现有的癫痫分类方法。例如,在 CHB-MIT 癫痫脑电图数据的案例研究中,它实现了超过 90% 的平均分类准确率。
摘要 机器学习方法已成功应用于多种神经生理信号分类问题。考虑到情绪与人类认知和行为的相关性,机器学习的一个重要应用是在基于神经生理活动的情绪识别领域。尽管如此,文献中的结果存在很大的差异,这取决于神经元活动测量、信号特征和分类器类型。本研究旨在为基于电生理脑活动的机器学习应用于情绪识别提供新的方法论见解。为此,我们分析了之前记录的脑电图活动,这些活动是在向一组健康参与者提供情绪刺激、高唤醒和低唤醒(听觉和视觉)时测量的。我们要分类的目标信号是刺激前开始的大脑活动。使用光谱和时间特征比较了三种不同分类器(线性判别分析、支持向量机和 k-最近邻)的分类性能。此外,我们还将分类器的性能与静态和动态(时间演变)特征进行了对比。结果表明,时间动态特征的分类准确率明显提高。特别是,具有时间特征的支持向量机分类器在对高唤醒和低唤醒听觉刺激进行分类时表现出最佳准确率(63.8%)。
摘要 脑机接口系统从脑电图 (EEG) 信号中解码大脑活动,并将用户的意图转化为控制和/或与增强或辅助设备通信的命令,而无需激活任何肌肉或周围神经。在本文中,我们旨在通过一种新颖的进化方法(基于融合的预处理方法)使用改进的 EEG 信号处理技术来提高这些系统的准确性。这种方法的灵感来自染色体交叉,即同源染色体之间遗传物质的转移。在本研究中,提出的基于融合的预处理方法被应用于从 29 名受试者收集的开放获取数据集。然后,通过自回归模型提取特征并用 k 最近邻分类器进行分类。我们对基于二元心算 (MA) 的 EEG 信号检测实现了 67.57% 到 99.70% 的分类准确率 (CA)。除了获得 88.71% 的平均 CA 之外,93.10% 的受试者在使用基于融合的预处理方法时表现出了性能改进。此外,我们将所提出的研究与共同平均参考 (CAR) 方法进行了比较,并且没有应用任何预处理方法。所取得的结果表明,所提出的方法分别比 CAR 和未应用任何预处理方法提供了 3.91% 和 2.75% 更好的 CA。结果还证明了所提出的进化预处理方法在对 MA 任务期间记录的 EEG 信号进行分类方面具有巨大潜力。
监测人脑活动对于了解大脑功能、预防精神疾病和改善生活质量具有巨大潜力。为此,EEG 系统必须从当今临床实践中经常使用的有线、固定和笨重的系统转变为提供高信号质量的智能可穿戴、无线和舒适的生活方式解决方案。可穿戴设备上的连续监测要求自动 EEG 分类算法既准确又轻量。这是我们在本文中的主要关注点。请注意,可穿戴设备的处理器很小且有限,与台式机和服务器处理器相比要慢得多。许多以前的算法都是基于经典信号处理技术 [1][2]。由于 EEG 信号特征在不同情况下和不同人之间存在显著差异,因此此类算法中使用的固定特征不足以准确区分所有人的不同类型的疾病。为了自动提取特征并提高脑信号分类准确性,最近提出了基于深度学习的算法,包括深度卷积神经网络 (CNN) 和循环神经网络 (RNN) [3][4]。用于序列学习的最流行和最有效的 RNN 模型之一是长短期记忆 (LSTM) [5]。LSTM 旨在对长程依赖关系进行建模,而 RNN 的记忆备份起着重要作用,因此它们比传统的 RNN 更准确、更有效。本文重点介绍基于 LSTM 循环神经网络的 EEG 分类算法。所提出的方法采用 RNN,因为 EEG 波形自然适合用这种类型的神经网络进行处理。与其他类型的神经网络相比,RNN 可以更有效地捕获序列数据中的时间依赖关系。然而,高分类准确率的代价是