摘要:脑电图 (EEG) 信号分类在开发残疾人辅助康复设备中起着重要作用。在此背景下,从 20 名健康人身上获取脑电图数据,然后进行预处理和特征提取过程。提取 12 个时间域特征后,采用两个著名的分类器,即 K 最近邻 (KNN) 和多层感知器 (MLP)。采用五重交叉验证方法将数据分为训练和测试目的。结果表明,MLP 分类器的性能优于 KNN 分类器。MLP 分类器实现了 95% 的分类器准确率,这是最好的。本研究的结果对于在线开发脑电图分类模型以及设计基于脑电图的轮椅非常有用。关键词:运动想象,脑电图信号,KNN,MLP,ICA。介绍
主要关键词