Loading...
机构名称:
¥ 3.0

由于金属合金重量轻、机械性能高,复合材料正在航空航天、汽车、船舶和建筑部件等多种先进应用中取代金属合金。因此,开发抗损伤和耐用的复合材料是必要的。当然,纤维基体脱粘、基体微裂纹和冲击损伤是复合材料应用中经常遇到的主要失效模式。此外,复合材料的部署和维护对机翼和尾翼等关键结构部件构成了挑战。因此,先进的材料和方法对于解决这些问题至关重要。使用复合材料的自修复技术似乎很有前景,因为它旨在修复或修复结构中的断裂和损伤起始和/或扩展。自修复复合材料可防止失效并延长关键结构的使用寿命。由于这些材料可以触发几乎自动修复,因此结构的维护可以大大简化,其中一些不需要任何外部干预即可启动修复过程。自修复复合材料能够在损坏开始时自动修复。早期的修复能力发展概念依赖于模仿树木和动物等生物体,这激发了开发自修复材料的研究。过去几十年来,人们一直在研究自修复材料和复合材料,特别是由自修复环氧树脂的发展推动(White 等人,2002 年)。自修复机制可分为两种类型,外在修复和内在修复。外在愈合基于使用愈合剂作为附加添加剂,而内在愈合涉及材料结构中的可逆分子键(超分子化学)。此外,还可以根据愈合方法进行分类,无论是自主愈合还是非自主愈合(即有或没有外部刺激)。开发自修复复合材料的一些众所周知的方法是包含微胶囊、中空纤维或含有愈合剂的血管网络(Blaiszik 等人,2008 年)。自修复也可以通过热激活,使用可逆相互作用或溶解的热塑性聚合物。形状记忆效应也已用于展示自修复特性。

11 – 用于航空航天应用的自修复复合材料

11 – 用于航空航天应用的自修复复合材料PDF文件第1页

11 – 用于航空航天应用的自修复复合材料PDF文件第2页

11 – 用于航空航天应用的自修复复合材料PDF文件第3页

11 – 用于航空航天应用的自修复复合材料PDF文件第4页

11 – 用于航空航天应用的自修复复合材料PDF文件第5页

相关文件推荐

2019 年
¥1.0