对大脑的基于工作的学习●在一项研究中,“ VR增强了局部相互作用,激活了功能模块之间的更健壮和广泛的途径,并改善了全球整合,全球隔离和同时的局部隔离”*●“虚拟现实(VR)模拟了一个人工感觉世界,在该世界中,用户可以与各种虚拟项目和环境进行交互,并成为一种集成的刺激,尤其是在皮质系统中……。这种灵活,沉浸式和用户友好的交互技术可以改善认知和记忆功能……●通过激活神经可塑性来实现这种功能改进,这是Cortex编码体验并学习新行为并响应环境变化的新行为的过程“…
机器学习技术越来越多地被认为是可行的天气和气候预测工具,因为它们相对于传统的数值天气预测模型,其效率和竞争性能。这项研究评估了使用视觉变压器(VIT)结构和球形谐波神经操作员的机器学习模型的有效性,该模型旨在建模球形表面上的非线性混沌和动力学系统。四castnet-v2中使用的球形傅立叶神经操作员(SFNO)不仅保留了傅立叶神经操作员(FNOS)在模拟时空数据中的长距离依赖性方面的优势,而且还解决了球形坐标中学习操作员的限制。
高质量的战斗机/攻击飞行员是一个与他的机器一样的人,即,他整合了高度,“ G”,空速,攻击角度与飞机的声音。在他的脑海中创建了V-N图(描述了飞机在负载因子“ G”和速度方面的性能能力)或V-N图的一部分,并尽可能准确地将飞机定位在Thrt图中。已经努力向飞行员提供V-N信息,但在大多数情况下,显示器并未超出模拟器阶段,或者,如果它们飞行,则仅在实验中飞行。目前,在USAF或海军飞机上的飞行员驾驶员尚未显示任何集成的V-N信息,也没有在空中战斗机动范围(ACMR)上汇报期间显示任何集成信息。在此报告中不会讨论用于飞行中的能量可操作性数据的技术,有兴趣的读者被指向斯坦利(6)I和莫洛尼和巴内特(5)。
涉及先天免疫细胞的炎症失调,特别是单核细胞/巨噬细胞谱系,是导致Duchenne肌肉营养不良症(DMD)发病机理的关键因素。受过训练的免疫力是一种抗感染的进化古老的保护机制,其中表观遗传和代谢改变赋予了先天免疫细胞对各种刺激的非特殊性过度反应性。在DMD动物模型(MDX小鼠)中的最新工作表明,巨噬细胞表现出训练有素的免疫力的基本特征,包括存在先天免疫系统“记忆”。通过骨髓移植对训练的表型对健康的非疾病小鼠的表观遗传变化和耐用的可传播反映了后者。机械上,建议通过受损的肌肉受损的因素在骨髓水平上诱导了4个调节的,带有样本的先天免疫的记忆样能力,从而夸大了促进性和抗流量的基因的上调。在这里,我们提出了一个概念框架,以参与训练有素的免疫力参与DMD发病机理及其作为新的治疗靶点的潜力。
UAV图像采集和深度学习技术已被广泛用于水文监测中,以满足数据量需求不断提高和质量的增加。但是,手动参数培训需要反复试验成本(T&E),现有的自动培训适应简单的数据集和网络结构,这在非结构化环境中是低实用性的,例如干山谷环境(DTV)。因此,这项研究合并了转移学习(MTPI,最大转移电位指数法)和RL(MTSA强化学习,多汤普森采样算法)在数据集自动启动和网络中自动培训,以降低人类的经验和T&E。首先,为了最大程度地提高迭代速度并最大程度地减少数据集消耗,使用改进的MTPI方法得出了最佳的迭代条件(MTPI条件),这表明随后的迭代仅需要2.30%的数据集和6.31%的时间成本。然后,在MTPI条件(MTSA-MTPI)中提高了MTSA至自动提高数据集,结果显示准确性(人为误差)提高了16.0%,标准误差降低了20.9%(T&E成本)。最后,MTPI-MTSA用于四个自动训练的网络(例如FCN,SEG-NET,U-NET和SEG-RES-NET 50),并表明最佳的SEG-RES-NET 50获得了95.2%WPA(准确性)和90.9%的WIOU。本研究为复杂的植被信息收集提供了一种有效的自动培训方法,该方法提供了减少深度学习的手动干预的参考。
近年来,文本图像联合预训练技术在各种任务中显示出令人鼓舞的结果。然而,在光学特征识别(OCR)任务中,将文本实例与图像中的相应文本区域对齐是一个挑战,因为它需要在文本和OCR文本之间有效地对齐(将图像中的文本称为ocr-文本以与自然语言中的文本区分开来),而不是对整体图像内容的全面理解。在本文中,我们提出了一种新的预训练方法,称为o cr-text d估计化m odeling(ODM),该方法根据文本提示将图像中的文本样式传输到统一样式中。使用ODM,我们在文本和OCR文本之间实现了更好的对齐方式,并启用预训练的模型以适应场景文本的复杂和多样化的样式。此外,我们为ODM设计了一种新的标签生成方法,并将其与我们提出的文本控制器模块相结合,以应对OCR任务中注释成本的挑战,并以大量未标记的数据参与预培训。在多个Pub-LIC数据集上进行的广泛实验表明,我们的方法显着地证明了性能,并且在场景文本检测和发现任务中的当前预训练方法优于当前的预训练方法。代码在ODM上可用。
我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
摘要。近年来,自然语言处理领域(NLP)发生了一场革命,文字一代在这一转变中起着关键作用。这种转变不仅限于技术领域,而且还无缝渗透了创意领域,一个很好的例子是歌曲歌词的一代。真正有效的生成模型,例如生成训练的预训练变压器(GPT)-2,需要进行微调作为关键步骤。本文利用了广泛参考的Kaggle数据集的鲁棒性,标题为“歌曲歌词”,仔细探讨了调节三个关键参数的影响:学习率,批处理大小和序列长度。数据集提出了一个引人入胜的叙述,该叙述将学习率视为最有影响力的决定因素,直接影响了产生的歌词的质量和连贯性。在增加批处理大小和扩展序列长度有望增强模型性能的同时,很明显,还有一个饱和点,超出该点的效果受到限制。通过此探索,本文旨在揭开模型校准的复杂世界,并强调战略参数选择在追求抒情卓越方面的重要性。
2023 年 6 月 13 日 — 促进和培养上班和下班时安全使用摩托车的文化。3. 适用性:本政策适用于所有被分配或被授权的制服人员。
33 岁的一级普通护理护士(准尉) BONNEMERE 毕业于土伦陆军辅助医疗参谋学校(EPPA),拥有扎实的操作和技术经验。无论是在外部任务中还是在帕米耶第 172 医疗队中,他都有着出色的服役记录。他总共跳跃了239次。