本报告中表达的意见基于 AECI Plant Health (AECI) 向 SRK Consulting (South Africa) (Pty) Ltd (SRK) 提供的信息。本报告中的意见是根据 AECI 的具体要求提供的。SRK 已尽一切努力审查所提供的信息。虽然 SRK 已将提供的关键数据与预期值进行了比较,但审查结果和结论的准确性完全取决于所提供数据的准确性和完整性。SRK 不对所提供信息中的任何错误或遗漏负责,也不承担因商业决策或由此导致的行动而产生的任何间接责任。本报告中提出的意见适用于 SRK 调查时存在的现场条件和特征,以及合理可预见的条件和特征。这些意见不一定适用于本报告日期之后可能出现的条件和特征,因为 SRK 对此事先不了解,也没有机会进行评估。
2024 年 5 月 27 日 管理人(上市) 孟买证券交易所有限公司 Phiroze Jeejeebhoy 塔,达拉尔街,堡,孟买 400023 股票编号 534618 主题:2024 年 5 月 21 日举行的投资者/分析师收益电话会议记录 参考:根据 2015 年印度证券交易委员会(SEBI)第 30 条(上市义务和披露要求)条例进行披露。 继我们 2024 年 5 月 15 日和 2024 年 5 月 21 日的沟通之后,附件是 2024 年 5 月 21 日星期二中午 12:00 举行的收益电话会议记录,讨论截至 2024 年 3 月 31 日的季度和年度的审计财务结果 此通知也可在公司网站 www.waareertl.com 上查阅。我们请求您将其记录在案。感谢您,您忠实的, Waaree 可再生技术有限公司 Heema Shah 公司秘书 ACS 52919 电子邮件 ID:info@waareertl.com
• 寻求将 Arup 报告第 1 阶段与专题组 5 分享的请求 - DOT • 汇编过去 10 年所有木材奖获奖者的 JPEGS,以用于潜在的案例研究汇编 - DOT • 讨论在 SDCC 社会住房项目中加入实时数据传感器的可能性 - DOT • 制定“木材设计原则”文件的目录草案,以供下次会议讨论 - DOT • 安排与消防顾问会面,讨论消防设计指南对消防官员的价值 - JA / DOT/ JC
杰夫·马什 您好,欢迎收看 2025 年 1 月版的 Pediapod。本月,我们将与《儿科研究》微生物组部门编辑 Namasivayam Ambalavanan 讨论儿科微生物组研究的热点。他是阿拉巴马大学伯明翰分校的儿科教授,过去 30 年一直从事新生儿学研究。他首先讲述了他最初是如何对微生物组产生兴趣的。 Namasivayam Ambalavanan 我们知道微生物组可能至关重要,不仅对早产儿,而且对我们所有人来说都如此。我们的肠道、皮肤和肺部中有数十亿的细菌、病毒、噬菌体、真菌甚至其他微生物,如古菌。自人类诞生以来,这些微生物就一直与人类共存。因此,我们开始研究早产儿的呼吸道微生物群,我们发现,如果在早产儿出生后不久观察其呼吸道或气管抽吸物,在它们真正被外界环境中的细菌定植之前,我们发现即使在出生后立即在气管抽吸物中就有细菌 DNA,这表明细菌产物在出生前就已经传染给了胎儿。 Geoff Marsh 这涉及到当前的一个争论,不是吗,关于婴儿何时首次被微生物定植? Namasivayam Ambalavanan 是的,所以我认为争论的焦点是他们是否在子宫内接触了活微生物。因为我们确实知道,例如,如果是极度早产的婴儿,他们通常是绒毛膜羊膜炎的结果。解脲支原体或支原体等病原体是导致绒毛膜羊膜炎的常见原因,几年前曾在阿拉巴马大学伯明翰分校工作的罗伯特·戈登伯格等研究人员的研究表明,大约四分之一的极度早产儿可以培养出解脲支原体。所以,是的,感染确实会传染给胎儿。我们知道有些胎儿确实患有先天性感染,例如巨细胞病毒 (CMV),甚至其他疾病,例如梅毒可导致先天性梅毒,弓形虫病会影响胎儿。但至于其他细菌,我们称之为共生菌,它们会传染给胎儿吗?有相当多的证据表明,胎盘基本上会过滤掉相当多的细菌,细菌产物最终会进入胎盘。因此,如果您对足月胎盘进行组织学分析,您会发现三分之一到一半的胎盘上都有革兰氏染色法鉴定出的细菌。您甚至可以对细菌 DNA、胎盘中的微生物 DNA 进行分析,您会发现它们数量庞大。因此,大多数时候活细菌不会交叉,但我们确实会得到少量的细菌 DNA。
结构电池是多功能设备,可以同时存储能量并承载机械负载。关键成分是碳纤维,它不仅充当结构增强,而且还可以通过可逆地托管利离子作为电极。仍然对LI和碳纤维相互作用知之甚少。在这里,我们绘制了用螺旋丙烯腈纤维插入的LI插入螺旋晶纤维中的螺旋纤维纤维(AES)。我们表明,在充电/放电速率的缓慢/放电速率下,LI在纤维的横向和纵向方向上均匀分布,并且在完全放电时,所有LI实际上都被排出。以快速的速度,LI倾向于将其捕获在纤维的核心中。在某些纤维中,在固体电解质相(SEI)和纤维表面之间发现LI板。我们的发现可以指导AES分析锂离子电池的其他碳质电极材料,并用于改善结构电池的穿孔。
设备应在非危险区域和基本电磁环境中使用,后者在 EN 61326-1 中定义。避免强烈的机械冲击和振动。避免腐蚀性环境和受灰尘、油雾等严重污染的区域。使仪器远离阳光直射。突然的温度或湿度变化可能会影响传感器的灵敏度。
2.6 CTUIL代表建议,要照顾高温期间效率较低的问题,可以安装额外的DC容量以在POI上提供额定的主动功率(根据授予的连接性)。进一步提到,需要从网格安全性的角度来分析活动能力的降低,并且需要记录由于温度升高而导致的这种主动功率降低的量子的数量,因此需要记录这种现象对电网安全性的影响。
本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。
我们基于蒙特卡洛树搜索形式主义引入了一种多目标搜索算法,以进行反归结计划。多目标搜索允许将各种目标组合起来,而无需考虑其规模或加权因素。为基于这种新型算法进行基准测试,我们在八个反曲面实验中采用了四个目标。目标范围从基于起始材料和步骤计数的简单目标到基于综合复杂性和路线相似性的复杂范围。我们表明,通过仔细的复杂目标,多目标算法可以优于单目标搜索,并提供更多样化的解决方案。但是,对于许多靶标化合物,单目标设置是等效的。尽管如此,我们的算法为合成计划中的特定应用程序纳入了新的目标。
a 瑞典皇家理工学院,应用物理系,阿尔巴诺瓦大学中心,斯德哥尔摩,SE-114 21,瑞典 b 中子散射和成像实验室,保罗谢勒研究所,CH-5232,Villigen PSI,瑞士 c 纳米科学中心,尼尔斯玻尔研究所,哥本哈根大学,Nørre All e 59,DK-2100,哥本哈根 O,丹麦 d 都灵理工大学应用科学与技术系,Corso Duca Degli Abruzzi 24 10129,都灵,意大利 e 维也纳科技大学固体物理研究所,Wiedner Hauptstraße 8 e 10,1040,维也纳,奥地利 f 瑞典皇家理工学院 PDC 高性能计算中心,SE-100 44,斯德哥尔摩,瑞典 g Nordita,瑞典皇家理工学院和斯德哥尔摩大学,Hannes Alfv ens v € ag 12,SE-106 91,斯德哥尔摩,瑞典 h 东京大学固体物理研究所中子科学实验室,柏,千叶 277-8581,日本 i 东京大学跨尺度量子科学研究所,东京 113-0033,日本 j 高能加速器研究机构材料结构科学研究所,茨城 305-0801,日本 k 牛津大学无机化学实验室,牛津 OX1 3QR,英国 l 印度理工学院物理系,坎普尔 208016,印度 m 塔塔基础研究所 DCMPMS,孟买 400005,印度 n 查尔姆斯理工大学物理系,SE-412,哥德堡,瑞典