钒氧化还原流量电池(VRB)系统涉及复杂的多物理和多时间尺度相互作用,其中电解质流速在静态和动态性能中起关键作用。传统上,固定流量已用于操作方便。但是,在当今高度动态的能源市场环境中,根据运营条件调整流量可以为提高VRB能源转换效率和成本效益提供显着优势。不幸的是,将电解质流速纳入传统的多物理模型对于VRB管理和控制系统来说过于复杂,因为实时操作要求用于船上功能的低计算和低复杂模型。本文介绍了一种新型的数据驱动方法,该方法将流速集成到VRB建模中,增强了数据处理能力和VRB行为的预测准确性。所提出的模型采用封闭式复发单元(GRU)神经网络作为其基本框架,在捕获VRB的非线性电压段方面表现出了非凡的熟练程度。GRU网络结构经过精心设计,以优化模型的预测能力,流速被视为关键输入参数,以解释其对VRB行为的影响。模型改进涉及分析在VRB操作中在各种流速下获得的精心设计的模拟结果。还设计和进行了实验室实验,涵盖了电流和流速的不同条件,以验证所提出的数据驱动的建模方法。对几种最新算法进行了比较分析,包括等效电路模型和其他数据驱动的模型,证明了考虑流速的基于GRU的VRB模型的优越性。由于GRU在处理时间序列数据方面的出色能力,该模型在宽范围内提供了令人印象深刻的准确终端电压预测,低误差率不超过0.023 V(1.3%)。这些结果表明了所提出的方法的功效和鲁棒性,突出了对管理和控制系统设计的准确VRB建模中流速的新颖性和重要性。
通过将光结合到下波长体积,光力学的微腔可以大大增强光和机械运动之间的相互作用。但是,这是以增加光损耗率的成本。因此,将基于微腔的光力系统放置在未解决的边带机制中,以防止基于边带的地面冷却。减少此类系统光损耗的途径是设计腔镜,即与机械谐振器相互作用的光学模式。在我们的工作中,我们分析了这样的光力学系统,其中其中一个镜子与频率很大,即悬挂的Fano镜子。此光力学系统由两种光学模式组成,这些光学模式与悬挂的Fano镜子的运动。我们制定了一个量子耦合模式描述,其中包括标准色散光学耦合以及耗散耦合。我们在线性状态下求解了系统动力学的兰格文方程,表明即使腔本身不在解析的边带机制中,但可以从室温下进行冷却,而是通过强光模式耦合来实现有效的侧带分辨率。重要的是,我们发现,需要针对有效激光衰减来适当分析腔输出光谱,以推断机械谐振器的声子占用。我们的工作还可以预测如何通过工程化Fano Mirror的特性来达到基于FANO的微博中非线性量子光学机械的制度。
脑电图 (EEG) 广泛用于诊断癫痫、神经退行性疾病和睡眠相关疾病等神经系统疾病。正确解释 EEG 记录需要训练有素的神经科医生的专业知识,而这种资源在发展中国家非常稀缺。神经科医生花费大量时间筛选 EEG 记录以寻找异常。由于 EEG 测试的产量低,大多数记录结果完全正常。为了最大限度地减少这种时间和精力的浪费,可以使用自动算法提供诊断前筛查,以区分正常和异常 EEG。数据驱动的机器学习提供了一种前进的方向,然而,现代机器学习算法的设计和验证需要经过适当策划的标记数据集。为了避免偏见,基于深度学习的方法必须在来自不同来源的大型数据集上进行训练。这项工作提出了一个新的开源数据集,名为 NMT 头皮 EEG 数据集,由来自不同参与者的 2,417 条记录组成,跨越近 625 小时。每条记录都由一组合格的神经病学家标记为正常或异常。还包括患者的性别和年龄等人口统计信息。我们的数据集主要针对南亚人口。我们在 NMT 上实施和评估了几种为 EEG 诊断前筛查而开发的最先进的深度学习架构,并将其与著名的天普大学医院 EEG 异常语料库的基线性能进行了比较。我们还研究了基于深度学习的架构在 NMT 和参考数据集上的泛化。发布 NMT 数据集是为了增加 EEG 数据集的多样性,并克服 EEG 研究缺乏准确注释的公开可用数据集的问题。
我们基于蒙特卡洛树搜索形式主义引入了一种多目标搜索算法,以进行反归结计划。多目标搜索允许将各种目标组合起来,而无需考虑其规模或加权因素。为基于这种新型算法进行基准测试,我们在八个反曲面实验中采用了四个目标。目标范围从基于起始材料和步骤计数的简单目标到基于综合复杂性和路线相似性的复杂范围。我们表明,通过仔细的复杂目标,多目标算法可以优于单目标搜索,并提供更多样化的解决方案。但是,对于许多靶标化合物,单目标设置是等效的。尽管如此,我们的算法为合成计划中的特定应用程序纳入了新的目标。
电动汽车中的抽象电池安全性是一项全面的工程努力,需要在每个阶段进行一致的考虑,包括电池材料,电池组设计和电池管理系统(BMS)。本综述着重于锂离子电池的安全管理策略和实际应用。电池安全的管理主要包括充电和放电安全,高压安全性和热安全性。在其中,充电和排放安全管理旨在防止电池损坏或由过度充电或出院造成的安全事件。高压安全管理涉及检测绝缘断层,过电流和其他潜在风险,以防止电气危害。热安全管理确保单个电池电池,模块和电池组保持最佳的工作温度范围和均匀的温度分布,从而防止热失控。
为了增强轨道几何维护计划并降低基础设施成本,准确预测由镇流器和子级别的循环负载引起的累积永久性轨道变形(沉降)对于铁路基础设施管理者至关重要。本文提出了一种新的方法,可以基于一项用于评估短期和长期轨道性能的混合方法研究的广泛参数研究,以降低计算成本来预测长期结算。将各种机器学习技术进行比较并采用用于开发预测模型,这些模型使用归档的压载轨道演示者的测量结果进行了验证。使用多个指标评估每个模型的性能和准确性,并进行了敏感性分析以识别有影响力的解释变量。值得注意的是,开发的随机森林模型与现场测量的定居数据表现出了良好的一致性。这种方法弥合了差距是数值模拟和经验数据,从而对永久轨道变形有了改进的整体理解。该方法具有在铁路轨道维护和更新管理的计算决策支持系统中实施的潜力。
多磷烯是具有P - - N作为骨骼的无机有机杂化聚合物,以其主链结构和高度活跃的P - Cl键形成的独特物理化学特性而闻名。聚磷酸的各种功能特性使其成为许多领域的有希望的研究前景,包括固体聚合物电解质,阳极材料,隔膜等。本综述讨论了主要的合成途径,各种功能的修改以及模板沉淀自组装poly Merization。其中,模板诱导的降水自组装是多磷酸形成纳米球,纳米片和纳米管的出色策略。固态锂电池是有希望的储能候选者,但是在室温下,常用的PEO电解质的LI +电导率限制为10-6 s·CM -1。具有乙醚氧侧的基于多磷酸的电解质倾向于具有更好的离子电导率,并且阻燃。聚磷酸有机聚合物也是一种有吸引力的碳纤维前体,也是阳极电极的理想选择。在高温碳化后,碳基质上掺杂原位的N,P杂种可以改变碳中立性和赋予带电的位点,从而进一步提高锂储存能力。此外,聚磷酸具有在隔膜和其他电池系统上使用的潜力。
从可植入电极中的长期和高质量的信号采集性能是建立稳定且有效的脑部计算机界面(BCI)连接的关键。脑组织的炎症反应阻碍了植入电极的慢性性能。为了解决生物界面电极的材料局限性,我们将磺化二氧化硅纳米颗粒(SNP)设计为聚(3,4-乙基二苯二甲苯)(PEDOT)(PEDOT)的掺杂剂,以修改可植入的电极。在这项工作中,通过电化学沉积在PEDOT中通过电化学沉积(NI-CR)合金电极和碳纳米管(CNT)纤维电极纳入PEDOT,而不会影响急性神经信号记录能力。在用PEDOT/SNP-MT涂层后,两个电极的电荷存储能力显着增加,并且在NI-CR合金电极的1 kHz处的电化学阻抗显着降低,而CNT电极的电极显着降低。此外,这项研究还检查了每隔一天的电触发MT释放对大鼠海马植入神经电极的神经记录质量和寿命1个月的影响。两种MT修饰的NI-CR合金电极和CNT电极在26天记录后均显示出明显更高的尖峰振幅。显着地,组织学研究表明,植入的NI-CR合金电极周围的星形胶质细胞数量显着降低了MT释放后。这些结果证明了PEDOT/SNP-MT治疗在改善慢性神经记录质量可能通过其抗渗透性特性改善的有效结果。
量子计算承诺在许多范围内的指数计算加速度,例如加密,量子模拟和线性代数[1]。即使一台大型,容忍故障的量子计算机仍然有很多年的距离,但在过去的十年中,使用超导电路[2-4]取得了令人印象深刻的进步,导致嘈杂的中间尺度量子(NISQ)ERA [5]。可以预测,NISQ设备应允许“ Quantum-tumpremacy” [6],也就是说,解决了在合理时间内在古典计算机上棘手的问题。最近通过对随机电路的输出分布进行采样[7],这是在53 QUIT的处理器上证明的。最突出的NISQ算法是用于组合优化问题的量子近似优化算法(QAOA)[8-10]和用于计算分子能量的变量量子量化量化算法[11-13]。QAOA是一种启发式算法,可以将多项式速度带到量子中编码的特定问题的解决方案