在光电探测器技术中,瓶颈被确定为能够检测低强度电磁辐射的新型材料的挑战,并且与综合电路(IC)制造也兼容。在各种金属氧化物半导体中,基于过渡金属氧化物(TMOS)材料更适合于由于其宽带,热稳定性和化学稳定性而导致的紫外线(UV)光电探测器应用。尤其是,三氧化钨(WO 3)已被证明是光子应用中最合适的候选者,包括电动型,光色素和气体传感器设备。在此,以增强性能增强的基于WO 3的光电探测器测试设备的开发已集中。WO 3薄膜以不同的氧局压(P O 2)的形式沉积在SIO 2 /Si底物上,并使用射频(RF)Magnetron溅射技术沉积在溅射压力条件下。在论文的第一部分中,溅射技术(如P o 2)中最重要的生长参数和用于沉积WO 3薄膜的溅射压力是根据光电探测器测试设备的性能进行了优化的。使用各种表征技术(包括X射线衍射(XRD),田间发射扫描电子显微镜(FESEM),X射线光电学光谱(XPS),Ra-Many和Atomic Force Microscopy(AFM),对结构,形态和化学状态进行了分析。Ti/Wo 3/Ti测试磁发炉在382 nm的紫外线照明下显示出0.166 a/w的较高响应性,在非常低的功率密度为0.66 mW/cm 2的情况下。生长的WO 3薄膜用于使用钛电极(TI)电极的Fabiale Metal-Metal-Senemenductor-Metal(MSM)平面结构化光电探测器测试设备,并测量了光电探测器参数,例如光电构成,响应率,响应性,检测性,检测率和外部量子效率(EQE)。为了实现从紫外线到可见区域的多光谱吸收,在论文的第二部分中介绍了新的基于WO 3的异质结构。最初,溅射基于石墨烯的溅射(GR/WO 3)异质结构被制造以研究紫外可见的光电探测器性能。GR/WO 3异质结构在512 nm的可见照明下达到了0.085 A/W的最大响应性。然而,由于石墨烯的某些局限性,WS 2 /WO 3异质结构是通过化学蒸气沉积(CVD)技术将WS 2纳米结构在WO 3层上种植到WO 3层的方法。在这里,使用互插的银(AG)电极制造Ag /WS 2 /WO 3 /Ag光电探测器测试设备。由于WS 2的纳米结构和外部电子迁移率的形成,在紫外线和可见的照明下分别实现了2.94 A/W和2.01 A/W的高响应性。获得的结果测试是WS 2 /WO 3异质结构是宽带紫外可见光电探测器的有前途的候选者,并且可以使用其他TMO和TMD进行相同的策略,以实现光电式Decessices的高性能光电探测器。
随着高级电子设备和电源系统的快速开发,具有高能量密度和功率密度的能源存储系统变得尤为重要。电源设备的能源存储系统主要包括超级电容器,可充电电池和燃料电池。特别是,新兴的可穿戴电子设备需要灵活且可拉伸的储能设备。聚合物由于其出色的机械强度,柔韧性,耐用性和低成本而广泛用于柔性储能设备中,作为聚合物电极,固态电解质,分离器和导电线。此外,聚合物的机械,电和电化学性能可以通过合适的填充剂在功能上修饰以满足不同的需求。
然而,量子计算的前景引发了计算和安全原理的根本性转变。量子计算机利用叠加和纠缠等量子力学特性,通过量子门操纵量子比特(所谓的“量子位”)。从 1998 年首次实验演示在两个物理量子比特上工作的量子算法 (3),到 2023 年 12 月 IBM 演示的 1,121 个量子比特的使用 (4),量子比特的使用取得了缓慢但稳定的进展。但使用的量子比特的数量只是故事的一部分。研究的重点已经转移,目的是实现高速率量子纠错。IBM 的路线图承诺到本世纪末将实现“拥有 200 个量子比特、能够运行 1 亿个门的量子系统”(5) 。
尽可能对所有 ICS 网络和设备的远程访问强制实施多因素身份验证。 制定网络事件响应计划,并定期与 IT、网络安全和运营方面的利益相关者一起演练。 按照一致的时间表将所有 ICS/SCADA 设备和系统的密码(尤其是所有默认密码)更改为设备唯一的强密码,以减轻密码暴力攻击,并为防御者监控系统提供检测常见攻击的机会。 确保正确配置 OPC UA 安全性,启用应用程序身份验证并显式信任列表。 确保安全存储 OPC UA 证书私钥和用户密码。 维护已知良好的离线备份,以便在发生破坏性攻击时更快地恢复,并对固件和控制器配置文件进行哈希和完整性检查,以确保这些备份的有效性。 将 ICS/SCADA 系统的网络连接限制为仅专门允许的管理和工程工作站。 通过配置设备保护、凭据保护和虚拟机管理程序代码完整性 (HVCI) 来可靠地保护管理系统。在这些子网上安装端点检测和响应 (EDR) 解决方案,并确保配置了强大的防病毒文件信誉设置。 从 ICS/SCADA 系统和管理子网实施强大的日志收集和保留。 利用持续 OT 监控解决方案对恶意指标和行为发出警报,监视内部系统和通信中是否存在已知的敌对行为和横向移动。为了增强网络可见性以潜在地识别异常流量,请考虑使用 CISA 的开源工业控制系统网络协议解析器 (ICSNPP)。 确保所有应用程序仅在运行需要时安装。 执行最小特权原则。仅在需要执行任务(例如安装软件更新)时使用管理员帐户。 调查拒绝服务或连接切断的症状,这些症状表现为通信处理延迟、功能丧失需要重新启动以及对操作员评论的操作延迟,这些都是潜在恶意活动的迹象。 监控系统是否加载了不寻常的驱动程序,尤其是 ASRock 驱动程序(如果系统上通常不使用 ASRock 驱动程序)。
不含防腐剂的减毒活疫苗(传染性废物)。医疗/生物危害废物(传染性废物)是指任何含有传染性物质或潜在传染性物质(如血液)的废物,应将其丢弃在医疗废物箱、袋子或锐器容器中。针头、刀片、玻璃吸量管和其他在处理过程中可能造成伤害的废物应作为医疗/生物危害废物(传染性废物)处理。带有尖针的注射器被视为医疗/生物危害废物(传染性废物),需要将其丢弃在锐器容器中。减毒活疫苗也被视为医疗废物,应将其丢弃在医疗废物箱、袋子或锐器容器中。含防腐剂的疫苗(危险废物)。任何未空 1 且含有汞(硫柳汞 2 )或甲酚基防腐剂的疫苗的小瓶都必须作为危险废物进行管理。这些最常见于多剂量小瓶和一些预装疫苗注射器,其中含有微量汞(硫柳汞)。必须确定疫苗是否超过联邦法律规定的汞毒性特征的最大浓度(0.2 毫克/升)。寻找 0.01% 硫柳汞。如果浓度 >0.2 毫克/升,则必须将这些疫苗作为危险废物处理,如果浓度 <0.2 毫克/升,则必须作为医疗(传染性)废物焚烧处理。3 只有在医疗废物处理公司
VTOL.2600 飞行机组舱 (a) 飞行机组舱布置(包括飞行机组视野)及其设备必须允许飞行机组在飞机飞行包线内执行任务,而无需过度集中注意力、提高技能、保持警觉或疲劳。 (b) 申请人必须安装飞行、导航、监视和升力/推力系统安装控制装置和显示器,以便合格的飞行机组可以监视和执行与系统和设备预期功能相关的规定任务。系统和设备设计必须考虑到飞行机组的错误,因为这些错误可能会导致额外的危险。 (c) 对于增强类,飞行机组界面设计必须允许在任何一个挡风玻璃板的视野丧失后继续安全飞行和着陆。
以及著名的 ENIAC 的后续产品,由四个主要单元组成:输入输出、存储、算术和控制(图 1)。预先准备好一些机器可读介质(穿孔卡、磁带等)上的数据和指令被输入到机器系统中,并根据指令中指定的步骤自动对数据进行操作。这些指令与问题数据存储在同一内部存储介质中,但由控制单元解释。“指令”通常表示:(1) 算术单元要执行的操作,(2) 一个或多个操作数在存储器中的位置(其地址),以及 (3) 操作结果的地址。一
(i) 专门为军事应用而设计的 GNSS 接收设备(如果设计或修改为机载应用,并能够在速度超过 600 米/秒时提供导航信息,则为 MT); (ii) 专门为 GPS 精确定位服务 (PPS) 信号的加密或解密(例如 Y 码、M 码)而设计的全球定位系统 (GPS) 接收设备(如果设计或修改为机载应用,则为 MT);
由于自动驾驶仪认证成本远高于其他航空电子设备,因此大多数其他解决方案不会取代较旧、功能较差的现有自动驾驶仪。新一代 FCS-3000/4000 是 Pro Line 21 航空电子设备套件的完美补充。该系统具有双独立飞行指引仪和带自动俯仰控制信号的三轴自动驾驶仪。但使用 FCS-3000/4000 进行升级不仅仅是用新的数字系统替换破旧的自动驾驶仪。该系统不仅可以减轻您的工作量,还可以为您的乘客提供异常平稳的飞行体验。 FCS-3000/4000 提供了一系列先进功能,包括因零件数量减少而实现的高可靠性、耦合的 VNAV、II 类进近能力、RVSM 兼容高度跟踪性能、广泛的自我诊断模式(可减少维护时间)、提供持续功能的增长潜力等等。
摘要 - 芯片上的许多核心系统(MCSOC)包含操作元素(PES),系统附加到系统的外围设备以及连接它们的NOC。这些系统具有不同的流动,遍历了NOC:PE-PE和PE-PERPHERAL流动。恶意硬件或软件可能会因为资源共享功能而阻碍系统安全性,例如用于多任务处理的CPU共享或共享属于不同应用程序的流量的NOC链接。将应用程序隔离为安全限制(例如安全区域(SZ))的方法保护PE-PE流动与文献中报告的大多数攻击。提出的提案用文献中与外围设备进行通信的方法很少,其中大多数都集中在共享内存保护上。本文介绍了一种原始方法,使用访问点-SEMAP的安全映射,该方法为SZS创建映射策略,以及与IO设备的沟通策略,以保护PE-外布流。结果表明,应用程序执行时间不会通过应用SEMAP来惩罚,与最新方法相比,具有优势。在安全性方面,SEMAP成功抵抗了攻击活动,阻止了试图进入SZ的恶意数据包。索引项 - 确定性,基于NOC的多核,安全区域,外围设备。