在光电探测器技术中,瓶颈被确定为能够检测低强度电磁辐射的新型材料的挑战,并且与综合电路(IC)制造也兼容。在各种金属氧化物半导体中,基于过渡金属氧化物(TMOS)材料更适合于由于其宽带,热稳定性和化学稳定性而导致的紫外线(UV)光电探测器应用。尤其是,三氧化钨(WO 3)已被证明是光子应用中最合适的候选者,包括电动型,光色素和气体传感器设备。在此,以增强性能增强的基于WO 3的光电探测器测试设备的开发已集中。WO 3薄膜以不同的氧局压(P O 2)的形式沉积在SIO 2 /Si底物上,并使用射频(RF)Magnetron溅射技术沉积在溅射压力条件下。在论文的第一部分中,溅射技术(如P o 2)中最重要的生长参数和用于沉积WO 3薄膜的溅射压力是根据光电探测器测试设备的性能进行了优化的。使用各种表征技术(包括X射线衍射(XRD),田间发射扫描电子显微镜(FESEM),X射线光电学光谱(XPS),Ra-Many和Atomic Force Microscopy(AFM),对结构,形态和化学状态进行了分析。Ti/Wo 3/Ti测试磁发炉在382 nm的紫外线照明下显示出0.166 a/w的较高响应性,在非常低的功率密度为0.66 mW/cm 2的情况下。生长的WO 3薄膜用于使用钛电极(TI)电极的Fabiale Metal-Metal-Senemenductor-Metal(MSM)平面结构化光电探测器测试设备,并测量了光电探测器参数,例如光电构成,响应率,响应性,检测性,检测率和外部量子效率(EQE)。为了实现从紫外线到可见区域的多光谱吸收,在论文的第二部分中介绍了新的基于WO 3的异质结构。最初,溅射基于石墨烯的溅射(GR/WO 3)异质结构被制造以研究紫外可见的光电探测器性能。GR/WO 3异质结构在512 nm的可见照明下达到了0.085 A/W的最大响应性。然而,由于石墨烯的某些局限性,WS 2 /WO 3异质结构是通过化学蒸气沉积(CVD)技术将WS 2纳米结构在WO 3层上种植到WO 3层的方法。在这里,使用互插的银(AG)电极制造Ag /WS 2 /WO 3 /Ag光电探测器测试设备。由于WS 2的纳米结构和外部电子迁移率的形成,在紫外线和可见的照明下分别实现了2.94 A/W和2.01 A/W的高响应性。获得的结果测试是WS 2 /WO 3异质结构是宽带紫外可见光电探测器的有前途的候选者,并且可以使用其他TMO和TMD进行相同的策略,以实现光电式Decessices的高性能光电探测器。
主要关键词