摘要本文对电动汽车(EV)各个方面的优化发展进行了全面调查。调查涵盖了电池的优化,包括热,电气和机械方面。讨论了通过增材制造启用的高级技术,例如生成设计或折纸风格的拓扑设计,以及对电池性能进行替代材料的敏感性研究,并结合了可持续性的考虑。审查了电池充电/放电和电池交换的策略,考虑到诸如操作,成本,电池性能和范围焦虑之类的因素。未来的研究建议解决对生态系统设计的不确定性,并纳入前进和反向预测能力,从而利用电网和单个车辆的利益。还讨论了其他EV组件的优化技术,例如电动机,动力总成,轮胎和底盘。最后,本文介绍了电动汽车管理的审查,特别是对充电站,电网和车队管理的优化,包括有关充电站建设,充电站运营策略以及电力系统操作策略的研究。强调需要进一步研究鲁棒性,可靠性和可持续性,以证明将来使用电动汽车的使用是合理的。
目前的工作介绍了一种创新的分层径向流量堆满的热能储能,能够增强热力和静水性能,从而限制了它们固有的权衡。通过1D-TWO相数值方法,在热力学方面和流体动力学方面都在建模所提出的填充床的热量储能概念的性能。用于工业应用和实验室原型的代表性存储大小被认为是为了突出规模的潜力和原型制作的代表性。形象。研究包括一组主要设计变量以及一组旨在突出主要操作参数影响的敏感性分析的热量存储设计的多目标优化。结果表明,所提出的存储几何形状可以同时优化热力学性能和流体动力性能。相对于统一的径向流量堆积的床存储(相对于轴向流量单位,高于85%),提议的存储单元可以以高于70%的压降降低,而有用的持续时间降低低于5%。工业规模的存储将受益于低宽高比和模块化单元的布置,从而确保系统的灵活性增强并减少了寄生消耗,这要归功于较低的压力损失,同时保证了充电和放电操作的大量有用持续时间。这项工作为未来的原型制作和验证铺平了道路。缩小的原型可以很好地表示所提出的热量储能解决方案的热和水动力行为和验证相关的基础。
传动系统:主轴承1和主轴承2之间的轴长度,从集线器法兰到主轴承的轴长度,高速轴长度,枢纽直径,低速 - 轴直径,低速轴壁厚,高速厚度,高速轴直径,高速轴壁板,床单厚度,床单厚度,床单厚度,底板越差异
摘要:随着可再生能源渗透率的提高,混合可再生能源系统与抽水蓄能相结合变得越来越受欢迎。这种配置在通常不与大陆电网相连的偏远地区更为繁荣,这些地区的能源独立挑战加剧。本研究侧重于从建立可再生能源最佳组合的角度设计此类系统,利用可再生能源的互补性和协同作用,结合抽水蓄能的多功能性。然而,这种设计具有相当大的复杂性,一方面是要满足多个目标和约束,另一方面是内在的不确定性,这些不确定性涵盖了所有底层过程,即外部和内部。在这方面,我们利用希腊爱琴海锡夫诺斯岛提出的混合可再生能源系统布局,在确定性和最终随机性设置中开发和评估综合模拟优化方案,揭示不确定性保护下的设计问题。具体来说,我们考虑了三个主要的不确定因素,即风速(自然过程)、能源需求(人为过程)和风能到电能的转换(内部过程,以概率功率曲线表示)。我们还强调了有关系统关键设计参数(水库规模和太阳能发电量)的决策程序,这是通过彻底解释不确定性感知优化结果来实现的。最后,由于拟议的抽水蓄能项目使用海洋作为下水库,因此需要解决额外的技术挑战。
增材制造 (AM) 设计涉及各个设计领域的决策,包括产品设计、材料选择和工艺规划。在实践中,工程师通常采用顺序设计流程按顺序优化这些设计领域。但是,顺序设计流程中没有充分考虑耦合因素,例如共享变量、相关约束和冲突目标,导致工作流程效率低下和设计解决方案不理想。为了解决上述问题,本文提出了一个多学科设计优化框架来同时优化不同的领域,从而能够在复杂约束下快速探索和充分利用 AM 设计空间。更具体地说,所提出的框架基于并发优化方法,通过允许自动交换设计信息来协调不同设计领域的优化。此外,该框架还利用替代建模方法来近似高保真模拟,以促进迭代过程。通过两个示例验证了所提框架的有效性,一个是带孔设计的板,另一个是钩子设计,这两个示例涉及工艺和结构领域的多个设计目标,即打印时间、打印面积、应变能和最大 von Mises 应力。
增材制造 (AM) 设计涉及各个设计领域的决策,包括产品设计、材料选择和工艺规划。在实践中,工程师通常采用顺序设计流程按顺序优化这些设计领域。但是,顺序设计流程中没有充分考虑耦合因素,例如共享变量、相关约束和冲突目标,导致工作流程效率低下和设计解决方案不理想。为了解决上述问题,本文提出了一个多学科设计优化框架来同时优化不同的领域,从而能够在复杂约束下快速探索和充分利用 AM 设计空间。更具体地说,所提出的框架基于并发优化方法,通过允许自动交换设计信息来协调不同设计领域的优化。此外,该框架还利用替代建模方法来近似高保真模拟,以促进迭代过程。通过两个示例验证了所提框架的有效性,一个是带孔设计的板,另一个是钩子设计,这两个示例涉及工艺和结构领域的多个设计目标,即打印时间、打印面积、应变能和最大 von Mises 应力。
目录 _____________________________________________________________________ 3 表格列表 ___________________________________________________________ 6 图片列表 __________________________________________________________ 8 首字母缩略词 _____________________________________________________________ 12 符号 _____________________________________________________________ 15 摘要 ________________________________________________________ 18 概述 ___________________________________________________ 34 第 1 章:适用于快速模型的方法 ______________________________ 38
摘要:使用增材制造 (AM) 进行修复和恢复的概念是在破损的部件上构建新的金属层。这对于市场上不再可用的复杂零件是有益的。优化方法用于解决产品设计问题,以生产高效且高度可持续的产品。设计优化可以改进零件的设计,从而提高在报废 (EoL) 阶段使用增材制造进行修复和恢复过程的效率。在本文中,目标是回顾在 EoL 阶段或 EoL 阶段再制造和恢复产品的策略,并使用 AM 促进该过程。再制造的设计优化对于减少维修和恢复时间非常重要。本综述论文重点介绍了 AM 在修复和恢复方面的主要挑战和限制。分析和介绍了各种 AI 技术,包括可以集成到 AM 设计中的混合方法。本文强调了研究差距并为未来的研究方向提供了建议。总之,将人工神经网络(ANN)算法与遗传算法相结合作为一种混合方法是解决局限性的关键解决方案,也是使用增材制造进行修复和恢复的未来。
钻孔热能存储系统的优化设计可以确保满足其技术经济目标。当前的设计优化方法要么采用不适合数值优化的详细建模,要么使用不考虑操作条件的简化模型。本文提出了一种面向优化的模型和非凸优化公式,与文献中的其他研究不同,它可以考虑季节性存储大小和温度对其容量、损耗、传热速率以及连接热泵或冷却器的效率的影响。该方法应用于一个案例研究,考虑了两种情况:仅存储冷却产生的热量和集成太阳能热发电。结果表明,随着电力二氧化碳强度分布、冷却需求和碳排放价格等边界条件的变化,不仅最佳季节性存储规模会发生变化,其最佳运行条件也会发生变化。在标准边界条件下,二氧化碳排放量的潜在减少量有限(最多 6.7%),但冷却需求的增加和二氧化碳强度季节性变化的增强导致排放量减少 27.1%。太阳能发电的整合率进一步提高到43.7%,而年成本则略有增加,仅为6.1%。
摘要:本文开发了一个多目标协同设计优化框架,用于优化连接到电网的混合电池储能系统 (HBESS) 中的电池和电力电子设备的尺寸和选择。协同设计优化方法对于具有耦合子组件的复杂系统至关重要。为此,在 HBESS 的设计中,使用非支配排序遗传算法 (NSGA-II) 进行技术的尺寸优化和选择,同时考虑成本、效率和寿命等设计参数。可互操作框架考虑了三个第一寿命电池单元和一个第二寿命电池单元,以形成两个独立的电池组作为混合电池单元,并考虑了两种功率转换架构,用于将混合电池单元连接到具有不同功率级和模块化水平的电网。最后,作为框架输出获得的全局最佳 HBESS 系统由 LTO 第一寿命和 LFP 第二寿命电池组成,与基线相比,总拥有成本 (TCO) 降低了 29.6%。