摘要:本文介绍了最近开发的饥饿游戏搜索(HGS)优化算法的应用。HGS与混乱的地图相结合,提出了新的混乱饥饿游戏搜索(CHGS)。它用于解决最佳功率流(OPF)问题。OPF的解决方案是为了最大程度地减少发电成本,同时满足了系统的约束。此外,本文为混合可再生能源,光伏和风电场提供了最佳选址。此外,还研究了添加可再生能源对整体发电成本价值的影响。优化问题的探索场是每个研究系统中每个发电机的主动输出功率。CHG还获得了最佳的候选设计变量,该变量对应于最低可能的成本函数值。通过对两个标准IEEE系统进行模拟的20个独立时间-IEEE 57-BUS和118-BUS系统,可以验证引入的CHGS算法的鲁棒性。获得并分析了所获得的结果。基于CHG的OPF被发现具有竞争力,并且优于用于解决文献中相同优化问题的其他优化算法。本文的贡献是在应用于OPF问题时测试对所提出的方法的改进,以及在引入的目标函数上添加可再生能源的研究。
目前的工作介绍了一种创新的分层径向流量堆满的热能储能,能够增强热力和静水性能,从而限制了它们固有的权衡。通过1D-TWO相数值方法,在热力学方面和流体动力学方面都在建模所提出的填充床的热量储能概念的性能。用于工业应用和实验室原型的代表性存储大小被认为是为了突出规模的潜力和原型制作的代表性。形象。研究包括一组主要设计变量以及一组旨在突出主要操作参数影响的敏感性分析的热量存储设计的多目标优化。结果表明,所提出的存储几何形状可以同时优化热力学性能和流体动力性能。相对于统一的径向流量堆积的床存储(相对于轴向流量单位,高于85%),提议的存储单元可以以高于70%的压降降低,而有用的持续时间降低低于5%。工业规模的存储将受益于低宽高比和模块化单元的布置,从而确保系统的灵活性增强并减少了寄生消耗,这要归功于较低的压力损失,同时保证了充电和放电操作的大量有用持续时间。这项工作为未来的原型制作和验证铺平了道路。缩小的原型可以很好地表示所提出的热量储能解决方案的热和水动力行为和验证相关的基础。
图 3.11:系统性能比较…………………………………………………………………….56 图 3.12:初级双极线圈和初级单极线圈的互操作性研究…………..58 图 4.1:模拟中的线圈结构…………………………………………………………………………62 图 4.2:所提线圈结构的 MAXWELL 模拟模型概览和正面视图…………………………………………………………………………………….63 图 4.3:用于接收器的空心圆柱体……………………………………………………………………...64 图 4.4:所提线圈结构和同轴线圈结构中的设计变量…………………………………...64 图 4.5:所提线圈结构中的旋转角、同轴线圈结构中的旋转角以及随旋转角变化的互感……………………………………...66 图 4.6:YZ 平面中的磁通密度…………………………………………………………...68 图4.7:ZX 平面的磁通密度………………………………………………………………...68 图 4.8:XY 平面的磁通密度………………………………………………………………...69 图 4.9:线圈参数说明…………………………………………………………………………72 图 4.10:发射器 A 处的全桥逆变器和接收器 c 处的全桥整流器……………..73 图 4.11:接收器 c 和发射器 A 的等效互感模型………………………………..75 图 4.12:第 4.4 节中提出的线圈结构的仿真和实验模型……………………………………………………………………………………77 图 4.13:随气隙变化的自感和互感………………………………..79 图 4.14:实验设置……………………………………………………………………………………80 图 4.15: P out = 1.0 kW 和 CR = 12 Ω 时的波形……………………………………………………81 图 4.16:环境空气条件下 CR 模式和 CV 模式下的系统性能…………...81 图 4.17:三种条件下的系统性能………………………………………………………………...82 图 5.1:所提出的理想线圈结构和仿真模型概述……………………………………………...84 图 5.2:所提出的理想线圈结构和之前的线圈结构中的旋转错位……………………………………………………………………………………86 图 5.3:第 4 章中提出的理想线圈结构和之前的线圈结构的总互感随旋转错位的变化…………………………………………………87 图 5.4:所提出的分段线圈设计……………………………………………………………………...88 图 5.5:所提出的分段线圈设计与之前的线圈设计中总互感随旋转错位的变化错位..………………89 图 5.6:YZ 平面、ZX 平面和 XY 平面的磁场分布………………..90 图 5.7:电路图………………………………………………………………………………92 图 5.8:线圈原型的仿真模型………………………………………………………………95 图 5.9:总互感的模拟和测量结果………………………………………………96 图 5.10:采用所提出的线圈结构的无线充电系统的实验装置…………………………97 图 5.11:系统完全对齐且旋转错位为 30° 时的波形…….97 图 5.12:旋转错位时输出功率和 DC-DC 效率的实验结果……………………………………………………………………………………98
ENCS 课程描述 ENCS 5300. 纳米材料基础 (3):本课程重点介绍描述和解释纳米级物质特性的化学、物理和数学概念。它将强调理解自组装过程背后的分子驱动力以及用于表征所得纳米材料的方法所需的基本化学、物理和数学。它还将介绍纳米材料的应用。 ENCS 6010. 高级应用数学 (3):本课程涵盖高级数学主题,包括线性代数、数值方法、傅里叶分析、离散数学、概率和统计以及代数结构,特别强调在工程和计算科学中的应用。 ENCS 6020. 高级计算 (3):本课程提供在高端计算机、计算机网络或个人计算机上进行计算的基本知识、技能和工具。主题包括:编程和编程语言;数据结构、算法和计算复杂性;高性能计算;分布式计算;优化;统计数据分析;计算误差分析。还将介绍先进计算技术的选定工程应用。 ENCS 6030. 网络物理系统的建模与仿真 (3):研究建模、仿真和设计的原理,包括制定规范和对由彼此通信并通过传感器和执行器与物理世界交互的设备组成的网络物理系统进行分析。主题包括同步和异步模型以及定时模型、安全性和活跃性要求以及实时调度。还研究了动态系统和混合系统的建模和仿真的一些方面。 ENCS 6110. 先进机器人系统 (3):本课程主要介绍机器人变换、运动学、动力学、差分运动、运动和路径规划、操纵和移动控制。高级主题包括:多机器人系统合作和协作任务规划和执行、机器人传感器接口和集成、被动和主动感知、处理和推理。学生将有机会通过实验室动手项目了解机器人软件、传感器和硬件。ENCS 6120。机电一体化系统设计 (3):本课程旨在涵盖从机电一体化理论的初步知识到基于项目的机电一体化系统设计。本课程的多学科内容包括:机制、电子、传感器、控制策略以及控制环路中的软件、固件和硬件。本课程还讨论了将机电一体化系统与传感器、机器人系统、可编程逻辑控制器 (PLC) 和人机界面集成的技术和技能。成功完成本课程的学生应能够解决需要紧密集成机电一体化组件和子组件以支持嵌入式机电机构和控制系统的多学科工程设计项目。ENCS 6200。工程设计优化 (3):优化技术的计算机化设计方法。使用设计变量和约束制定优化问题。使用数学模型解决问题,运筹学中的确定性优化方法,线性规划模型,单纯形法,线性规划中的对偶性和灵敏度。非线性优化和多目标函数优化,约束和无约束问题。