ENCS 课程描述 ENCS 5300. 纳米材料基础 (3):本课程重点介绍描述和解释纳米级物质特性的化学、物理和数学概念。它将强调理解自组装过程背后的分子驱动力以及用于表征所得纳米材料的方法所需的基本化学、物理和数学。它还将介绍纳米材料的应用。 ENCS 6010. 高级应用数学 (3):本课程涵盖高级数学主题,包括线性代数、数值方法、傅里叶分析、离散数学、概率和统计以及代数结构,特别强调在工程和计算科学中的应用。 ENCS 6020. 高级计算 (3):本课程提供在高端计算机、计算机网络或个人计算机上进行计算的基本知识、技能和工具。主题包括:编程和编程语言;数据结构、算法和计算复杂性;高性能计算;分布式计算;优化;统计数据分析;计算误差分析。还将介绍先进计算技术的选定工程应用。 ENCS 6030. 网络物理系统的建模与仿真 (3):研究建模、仿真和设计的原理,包括制定规范和对由彼此通信并通过传感器和执行器与物理世界交互的设备组成的网络物理系统进行分析。主题包括同步和异步模型以及定时模型、安全性和活跃性要求以及实时调度。还研究了动态系统和混合系统的建模和仿真的一些方面。 ENCS 6110. 先进机器人系统 (3):本课程主要介绍机器人变换、运动学、动力学、差分运动、运动和路径规划、操纵和移动控制。高级主题包括:多机器人系统合作和协作任务规划和执行、机器人传感器接口和集成、被动和主动感知、处理和推理。学生将有机会通过实验室动手项目了解机器人软件、传感器和硬件。ENCS 6120。机电一体化系统设计 (3):本课程旨在涵盖从机电一体化理论的初步知识到基于项目的机电一体化系统设计。本课程的多学科内容包括:机制、电子、传感器、控制策略以及控制环路中的软件、固件和硬件。本课程还讨论了将机电一体化系统与传感器、机器人系统、可编程逻辑控制器 (PLC) 和人机界面集成的技术和技能。成功完成本课程的学生应能够解决需要紧密集成机电一体化组件和子组件以支持嵌入式机电机构和控制系统的多学科工程设计项目。ENCS 6200。工程设计优化 (3):优化技术的计算机化设计方法。使用设计变量和约束制定优化问题。使用数学模型解决问题,运筹学中的确定性优化方法,线性规划模型,单纯形法,线性规划中的对偶性和灵敏度。非线性优化和多目标函数优化,约束和无约束问题。
主要关键词