2024 年 7 月 6 日 — Gargini,“维持摩尔定律——微电子学、纳米电子学及其他”。ISO focus,第 28-30 页,2007 年。[10] F. F. Sizov,“红外探测器:展望与...
亨斯迈先进材料是亨斯迈集团公司的国际业务单位。亨斯迈先进材料 通过在不同国家的亨斯迈集团公司关联公司经营业务,包括但不限于 Huntsman Advanced Materials LLC 在美国经营业务、 Huntsman Advanced Materials (Europe) BVBA 在欧洲经营业务,以及 Huntsman Advanced Materials (Australia) Pty Ltd, Huntsman Advanced Materials (Hong Kong) Ltd, 亨斯迈先进化工材料(广东)有限公司、 Huntsman Advanced Materials (India) Pvt Ltd 、 Huntsman Japan KK 、 Huntsman Advanced Materials (Singapore) Pte Ltd 和 Huntsman Advanced Materials (Taiwan) Corporation 在亚太区经营业务。
This dootmentis an authentic electronic certiticate for.CIienr business purposes use only.Printed version of the electronic cerliticate are permitted and will 昙乡遨里 瞥卿 stoerea 竺气 copy.I nis 000iment is 笋 uec Dy 哄 uompa,su 瞥件. to 钟‘ ene 卿 t 只 1aIuons or ceruscaP 甲 servi 毕 avaiiaoie 叭 terms 即 U uonamons !势“溉 AttenoOflis, ,照 me 少 mi"non or 少恻咚 inaemnii 卿 on'ano junsoicuonai ,只 auses con 哪叩吧 Ffl.I fliS aoatmern is copyngnt 涤弓绮溉 prowct 加 ana any unauuionz 印 aiwrat 狱 1,0'ery or 曰巧 In 口 soil or me 以 xuentorap 祀 aranc 刀 01 川石 uoajmern IS Uflidw'UI.
本项目将理论教学与实践教学相结合,将基础知识学习、劳动教育和美育融为一体。基础知识学习主要围绕无人机的发展历程、系统结构、飞行原理、应用场景、法律法规、控制算法等理论知识展开。实践部分主要围绕四旋翼无人机的机械结构设计与组装展开。在实践中采用激光切割、3D打印等不同的加工方式对无人机机械结构进行加工,将劳动教育融入到加工过程中。通过使用成品四旋翼无人机,训练操控技术,学习航拍技术。在航拍过程中学习光线与镜头的语言表达、构图技巧以及视频、照片拍摄的后期处理方法。将美育融入拍摄过程,培养审美思维。通过小型可编程四旋翼完成四旋翼无人机的编队飞行,在编队过程中训练学生的逻辑思维和团队合作意识。在课程中不仅掌握了相关的理论知识,还锻炼了实践和创新能力。让无人机不再只是在天上飞,而是清晰地印在每个同学的脑海里。
摘要:石墨烯/硅异径光电探测器由于高表面状态和界面处的低屏障高度而遭受高黑暗电流,这限制了它们的应用。在这项研究中,我们通过磁控溅射引入了HFO X界面层以解决此问题。使用这种新结构,在偏置电压为-2 V的情况下,暗电流降低了六次。在460 nm的照明下,响应性为0.228a/w,检测率为1.15×10 11 cmHz 1/2 w -1,噪声等效的功率为8.75×10-5 pw/hz 1/2/2/2/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/hz 1/2/2/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/hz。此外,HFO X界面层中的氧空位为电荷载体提供了导电通道,导致光电流增长2.03倍,外部量子效率为76.5%。光电探测器在低偏置电压下保持良好的光响应能力。这项工作展示了HFO X膜作为界面层材料的出色性能,并为高性能光电探测器提供了新的解决方案,以及提高太阳能电池光伏转换效率的新途径。
纳米材料已经在我们的许多日常产品中发挥着重要作用。它们不仅存在于现代电视或特殊太阳能电池等“高科技”产品中,也存在于某些防晒霜等“普通”产品中。纳米材料在生命科学和医学领域的应用也越来越多,例如用于疾病诊断或癌症治疗。所有纳米材料都具有一个重要特征,那就是它们的表面积相对于其体积而言非常大,这使得它们在许多应用领域如此受关注。然而,有时纳米材料的其他物理性质与“宏观”材料相比也会发生根本变化。例如,只要不超过一定尺寸,非常小的半导体晶体在用紫外线照射后就可以发出可见光;纳米材料的磁性与宏观材料的磁性可能有很大不同;人体细胞对纳米颗粒的反应通常与对较大物体的反应非常不同。
摘要:心肌梗塞(MI)是心血管疾病死亡的主要原因。快速诊断和有效治疗对于改善患者预后至关重要。尽管当前的诊断和治疗方法已经取得了重大进展,但它们仍然面临诸如缺血 - 再灌注损伤,微循环疾病,不良心脏重塑和炎症反应等挑战。这些问题强调了迫切需要创新解决方案。纳米材料具有多种类型,出色的理化特性,生物相容性和靶向能力,在应对这些挑战方面具有有希望的潜力。纳米技术的进步越来越多地引起人们对纳米材料在诊断和治疗心肌梗塞中的应用。我们总结了心肌梗塞的病理生理机制和分期。我们系统地回顾了纳米材料在MI诊断中的应用,包括检测生物标志物和成像技术以及在MI治疗中,包括抗氧化作用,抗氧化剂应激,抗纤维化,纤维化的抑制,促进血管生成以及心脏传导修复。我们分析了现有的挑战,并提供了对未来研究方向和潜在解决方案的见解。具体来说,我们讨论了对严格的安全评估,长期疗效研究的需求,以及将实验室发现转化为临床实践的强大策略的发展。总而言之,纳米技术作为诊断和治疗心肌梗塞的新策略具有重要的希望。它可以增强临床结果并彻底改变患者护理的潜力,这是在现实世界中使用实际应用的令人兴奋的研究领域。关键字:心肌梗塞,纳米材料,纳米颗粒,诊断和治疗
微电子机械系统( Micro Electro Mechanical Systems ),是建立在微米 / 纳米技 术基础上,对微米 / 纳米材料进行设计、加工、制造、测量和控制的技术。 它可将机械构件、光学系统、驱动部件电控系统集成为一个整体单元的微 型系统,基本特点为微型化、智能化、多功能、高集成度和适用于大批量 生产
( 南京大学 任春来 编译自 Davide Michieletto.Physics World , 2021 , (3) : 48 )