a NovaMechanics Ltd, Nicosia 1070, Cyprus b Entelos Institute, Larnaca 6059, Cyprus c NovaMechanics MIKE, Piraeus 18545, Greece d Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere 33520 Finland e School of Physics, University College Dublin, Belfield,都柏林,爱尔兰F QSAR LAB,TRZY LIPY 3,GDA´NSK 80-172,波兰G大学,GDANSK大学,化学学院,Wita Stwosza 63,Gdansk 63,Gdansk,Gdansk 80-308,波兰H水研究小组,北维斯特大学,北维斯特大学,北部托尔斯·托尔·布兰德大学纳米技术国家实验室(LNNANO),巴西能源与材料研究中心(CNPEM),坎普纳斯,巴西坎普纳斯,巴西J. j norway k Jellu,气候与环境研究学院,气候与环境研究研究所,纽约尔,Kjeller,2007 15780年,希腊M多瑙河纳米技术,布拉迪斯拉瓦,斯洛伐克n地理,地球和环境科学学院,伯明翰大学,伯明翰大学,埃德巴斯顿,伯明翰B15 2TT,英国环境健康研究小组,卢森堡科学与技术研究院,41 Rue du du du du du du du du du du du du du du du du du du du du du du du du du du du du du塔尔图,拉维拉14a,塔尔图50411,爱沙尼亚Q科学与技术创新部,大学
1 University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India, 2 Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada, 3 Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom农业,技术与科学大学(SHUATS),Prayagraj,印度北方邦,印度阿育吠陀研究所4,印度西孟加拉邦加尔各答,加尔各答,GMP提取设施5中心5 Colleges Jhanjeri集团(Mohali),Sahibzada Ajit Singh Nagar,印度旁遮普邦,7个生命,健康与环境科学系,L'Aquila University,L'Aquila,L'Aquila,L'Aquila,意大利8实验室生物技术,环境,环境,环境,环境与健康生物技术和微生物活动,君士坦丁兄弟大学,君士坦丁兄弟,阿尔及利亚,康斯坦丁,10号环境科学与工程系,广东 - 纽约市,以色列技术研究所,中国尚托,11 Instituto de InvestionesQuímicobiológicas,Michoilia de Sannicolia,ciudalgo墨西哥米京阿坎,墨西哥索诺拉岛12章,墨西哥索诺拉,墨西哥索诺拉,图形时代微生物学13
使用先进的纳米材料封装益生菌有望显著提高其在胃肠道中的稳定性、活力和功效。通过保护益生菌免受胃部恶劣环境的影响并提高其粘附和定植肠道的能力,基于纳米材料的封装可以最大限度地发挥益生菌的健康益处。此外,封装的益生菌与胃肠道相互作用,从而增强其机械、化学、生物和免疫屏障,促进整体肠道健康。随着研究的不断发展,这种创新方法可能会彻底改变益生菌在食品和制药行业的使用,从而产生更有效的疗法和功能性产品,以改善人类健康。
PACS 87.85.qr,87.85.rs a a型石墨烯和氧化石墨烯由于其独特的物理化学特性而在各种生物医学范围内已成为有前途的材料。本综述概述了它们在基因输送,组织工程,生物传感器以及抗菌和抗菌剂中的利用。在基因递送中,基于石墨烯的材料提供了有效的递送平台,具有增强的细胞摄取和最小的细胞毒性,这在基因疗法方面有希望的进步。此外,在组织工程,石墨烯和氧化石墨烯中,具有出色的生物相容性,电导率和机械性能,促进细胞粘附,增殖和组织再生的分化。此外,基于石墨烯的生物传感器表现出较高的灵敏度,选择性和稳定性,可快速,准确地检测生物分子以实现诊断和治疗目的。这篇评论重点介绍了石墨烯和氧化石墨烯在革新生物医学技术方面的最新进步,挑战和未来的前景,为医疗保健中创新的解决方案铺平了道路。k eywords石墨烯,氧化石墨烯,复合材料,纳米结构,生物相容性,生物医学应用,作者认识圣彼得堡州立大学进行研究项目11602266。f或引用Semenov K.N.,Ageev S.V.,Shemchuk O.S.,Iurev G.O.,Abdelhalim A.O.E.,Murin I.V.,Kozhu-Khov.p.k.,Penkova A.V.,Maystrenko D.N.纳米系统:物理。化学。数学。,2024,15(6),921–935。基于石墨烯的纳米材料在基因输送,组织工程,生物传感和开发抗菌剂中的生物医学应用。
摘要 人工智能 (AI) 在科学技术的各个方面发挥着越来越重要的作用,甚至延伸到日常生活中,它正在开辟新的创新途径。这些途径使得开展高度目标导向的材料研究成为可能,加速材料的合成、对其性质的微调和性能的提高,所有这些都只需最少的测试和更短的时间。这一趋势在纳米材料领域也显而易见。许多国家和研究人员都参与了人工智能,更具体地说是机器学习 (ML) 在纳米材料中的应用,本社论旨在提供人工智能在这一领域的范围和影响的简明统计概述。人工智能正在确立其存在,为未来几年的更大进步奠定基础。本概述重点介绍了近期致力于纳米粒子、量子点、石墨烯、碳纳米管、MXenes 和纳米复合材料中 AI 应用的大量研究。此外,在金属有机骨架 (MOF) 领域,AI 也显示出令人鼓舞的进展。本社论旨在强调 AI 在推动纳米材料研究方面的独特作用。
随着纳米材料的出现,半导体系统的创建在哲学、架构和物理上的构想发生了彻底的改变。这些材料的尺寸在 1 到 100 纳米之间,为开发改进的半导体特性和性能带来了许多革命性的机会。微电子和纳米电子在引入晶体管技术的新方法、芯片布局和制造方法、速度的提高、功耗的提高以及电子设备的小型化方面发挥了关键作用。这一点变得尤为重要,尤其是当传统的硅基半导体技术正面临微加工的物理障碍时,人们正在寻求新的方法来满足未来一代计算、通信和电子应用日益增长的需求。这项研究采用了全面的文献综述,综述了有关纳米材料在半导体生产中的应用的科学、学术、技术和工业文章。该主题结合了来自大量实验研究、工业应用和理论实施分析的数据,这些分析涉及纳米材料的不同形式、其特性和合成方法。此次审查涉及对半导体应用中的碳纳米管以及石墨烯、量子点和金属纳米粒子的研究结果的审查。评估包括制造工艺、相对性能测量、各种纳米材料应用的比较及其对半导体器件效率和功能的影响。研究结果证实,纳米材料集成可大幅提高半导体性能。科学研究表明,新获得的纳米材料可将加工速度提高 40%,并将电力消耗降低 35%。与硅半导体参考相比,石墨烯等二维材料的应用已证明电子迁移率提高了 60%。一些量子点应用现在已在器件中实现了至少 45% 的光电效率。纳米制造生产的新方法已使制造成本降低了 30%,从而提高了所制造器件的准确性和可靠性。研究结果展示了纳米材料如何彻底改变半导体制造的当前趋势。这些在器件性能、能耗和制造方面的改进证明了纳米材料应用于未来一代半导体器件的可行性。所提到的主要问题,如可扩展性集成和工艺控制,必须进一步讨论和详细研究。这项研究的意义在于,纳米材料有进一步改进的前景,可以根据未来应用的突破为半导体技术提供先进的边际改进,可能重塑电子设备的功能和生产方法。本综述提供了全面的综述,为纳米材料如何促进半导体制造技术的改进奠定了基础。在改进小型设备性能、降低功耗和改进制造方法方面的经验教训支持了纳米材料在半导体生产中的必要性。这一观点表明,尽管存在许多规模和实施障碍,但与机遇相关的风险要高得多。本研究
摘要 纳米材料已成为药物输送系统的一项变革性技术,具有提高治疗效果和安全性的独特性能。纳米材料体积小、表面积大,并且能够进行靶向输送,因此能够提高药物的溶解度、控制释放并减少副作用。本文讨论了用于药物输送的各种类型的纳米材料,包括纳米颗粒、脂质体和树枝状聚合物,重点介绍了它们的作用机制和相对于传统输送方法的优势。尽管纳米材料具有潜力,但它在临床应用中的整合仍面临多项挑战,包括制造可扩展性、监管障碍、生物分布不可预测性以及对毒性和生物相容性的担忧。此外,纳米材料与生物系统之间复杂的相互作用也带来了重大障碍。纳米材料在药物输送中的未来在于创新方法,例如个性化医疗和可生物降解载体,这需要持续的跨学科研究和合作。本综述旨在深入了解纳米材料在药物输送方面的现状和未来前景,强调克服现有挑战以充分发挥其在改善患者治疗效果方面的潜力的重要性。
通过操纵包括纳米颗粒(NP)(NPS)的颗粒的形状和大小来设计,布置和应用结构,设备和系统。因此,纳米技术正在推进跨天然科学的各种关键应用到生物医学领域(Haleem等,2023)。尽管纳米材料在生物医学领域表现出巨大的潜力,但目前在该领域缺乏监管指导,这对于为制造商,决策者,卫生机构和公众提供法律确定性很重要。因此,本书还讨论了纳米材料针对临床应用的法规。此外,由于预计纳米材料会显着影响生物医学领域,因此在本书中还讨论了它们的未来方向,以突出读者的当前趋势。
尽管近年来,纳米材料的原位透射电子显微镜(TEM)已变得很重要,但样品制备中的困难限制了对电性能的研究数量。在此,提出了单个1D和2D材料的基于支持的准备方法,该方法产生了可重复的样品转移,以通过原位tem进行电气研究。机械刚性支撑网格通过聚焦离子束以最小的损坏和污染来促进转移并接触到原位芯片。通过不同的纳米材料(包括WS 2的单层)来评估转移质量。可能的研究涉及各个纳米材料水平上的结构特性与电特性之间的相互作用,以及电流下的失效分析或电流,焦耳加热和相关效果的研究。TEM测量值可以通过在相同对象上进行的其他相关显微镜和光谱进行富集,并具有允许在几微米范围内具有空间分辨率的表征的技术。尽管为原位tem开发,但目前的转移方法也适用于将纳米材料转移到类似的芯片中,以进行进一步的研究,甚至用于在潜在的电气/光电/传感设备中使用它们。
磁共振成像 (MRI) 是一种全球公认的诊断程序,尤其因其卓越的软组织对比度、高分辨率成像和非电离辐射特性而受到认可,使其成为医学领域不可或缺的工具。然而,为了优化 MRI 对某些疾病的敏感性和特异性,使用造影剂变得必不可少。最近的发展集中在基于纳米材料的 MRI 造影剂,以提高诊断准确性和图像质量。本综述重点介绍了此类药剂的进展,包括金属氧化物纳米粒子、碳基材料、金纳米粒子和量子点。它讨论了它们在 MRI 引导治疗中的作用,如靶向药物输送、热疗、放射疗法、光动力疗法、免疫增强疗法和基因疗法。还提供了对 MRI 造影剂在影像医学中未来潜力的见解。