1. 国家“十四五”规划明确支持香港发展成为国际创新科技中心。香港特别行政区行政长官在2022年《施政报告》中提出配合国家“十四五”规划,将香港发展成为国际创新科技中心。2005年6月,立法会财务委员会批准成立五个研发中心,以推动和协调选定重点领域的应用研发,并促进研发成果商品化和技术转移。2006年4月,纳米及先进材料研究院成立,作为纳米技术和先进材料的研发中心。纳米及先进材料研究院的运营成本由创新及科技基金资助。截至2024年7月31日,财务委员会批准的纳米及先进材料研究院的拨款总额为15.153亿美元。创新及科技基金的拨款承诺将支持纳米比亚创新科技学院由 2006 年 4 月 1 日至 2028 年 3 月 31 日的 22 年营运。在 2019-20 至 2023-24 年度期间,纳米比亚创新科技学院每年的收入及开支介乎 2.268 亿至 2.902 亿元。创新科技署负责监察纳米比亚创新科技学院的营运及表现,并定期向立法会提交纳米比亚创新科技学院的进度报告。审计署最近对纳米比亚创新科技学院进行了检讨。
空间环境的空间环境对太空行程包含主要危害,其中包括空间辐射和微型度量,如图1所示。空间辐射主要由电子和质子,太阳颗粒事件(SPE)和银河宇宙辐射(GCR)组成。SPE是来自太阳的高能电荷颗粒的数量很高(每单位时间)的事件。它们可以源自太阳浮动部位置或与冠状质量弹出相关的冲击波。GCR由高能电荷颗粒组成,该颗粒源自大型恒星的超新星和活性银河核。它从各个方向击中月球,火星,小行星和航天器,并且总是以背景辐射为单位。GCR是由核(完全离子化原子)的原始构成的,以及来自电子和正面的较小贡献(约2%)。1具有高原子数(z> 10)和高能量(E> 100 GEV)的GCR颗粒的小但很重要的成分。1这些高原子数,高能量(HZE)离子颗粒仅占总GCR含量的1-2%,但它们与非常高的特种离子化相互作用,因此贡献了约50%的长期空间辐射剂量的长期辐射剂量。2这些GCR颗粒,
a NovaMechanics Ltd, Nicosia 1070, Cyprus b Entelos Institute, Larnaca 6059, Cyprus c NovaMechanics MIKE, Piraeus 18545, Greece d Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere 33520 Finland e School of Physics, University College Dublin, Belfield,都柏林,爱尔兰F QSAR LAB,TRZY LIPY 3,GDA´NSK 80-172,波兰G大学,GDANSK大学,化学学院,Wita Stwosza 63,Gdansk 63,Gdansk,Gdansk 80-308,波兰H水研究小组,北维斯特大学,北维斯特大学,北部托尔斯·托尔·布兰德大学纳米技术国家实验室(LNNANO),巴西能源与材料研究中心(CNPEM),坎普纳斯,巴西坎普纳斯,巴西J. j norway k Jellu,气候与环境研究学院,气候与环境研究研究所,纽约尔,Kjeller,2007 15780年,希腊M多瑙河纳米技术,布拉迪斯拉瓦,斯洛伐克n地理,地球和环境科学学院,伯明翰大学,伯明翰大学,埃德巴斯顿,伯明翰B15 2TT,英国环境健康研究小组,卢森堡科学与技术研究院,41 Rue du du du du du du du du du du du du du du du du du du du du du du du du du du du du du塔尔图,拉维拉14a,塔尔图50411,爱沙尼亚Q科学与技术创新部,大学
于1964年在新德里的Kirti Nagar,Rajdhani学院,以前是政府学院成立,并在自主治理下发展。是德里大学的组成,它庆祝了50年的学术卓越。位于拉贾花园附近的西德里,可以通过Ramesh Nagar和Rajouri花园地铁站轻松进入。最初安置在一栋适度的学校建筑中,该大学演变成德里大学的主要机构之一。学院综合大楼包括一个空调的研讨会/研讨会室,一个礼堂以及一个储存良好的图书馆,该图书馆带有计算机和互联网设施,可访问一本超过一本LAC学术书籍和电子书。此外,该学院还配备了州的科学实验室以及数学和计算机实验室。
摘要:在发现X射线后,闪烁体通常用作诊断医学成像,高能物理学,天体物理学,环境辐射监测和安全性检查中的高能辐射传感器。常规闪烁体面临的内在局限性,包括闪烁的光的提取效率低和发射率低,导致商业闪烁体的效率小于10%。克服这些局限性将需要新材料,包括闪烁的纳米材料(“纳米激素”),以及提高闪烁过程效率的新的photonic方法,提高材料的排放速率,并控制闪烁光的光的方向性。在这种观点中,我们描述了新出现的纳米弹性材料和三个纳米光子平台:(i)等离子体纳米纳米菌 - (ii)光子晶体和(iii)高性能闪烁体的高Q跨面。我们讨论了纳米激素和光子结构的组合如何产生“超闪烁体”,从而实现最终时空分辨率,同时在提取的闪烁发射中可以显着提升。
摘要:随着全球变暖和温室效应的加剧,全球对制冷的需求日益增加。但是,传统的制冷方法不仅消耗了很多能量,而且还会产生诸如Co 2和臭氧(O 3)之类的温室气体(O 3),这将导致温室效应的强化,从而导致恶性循环。迫切需要开发一种干净的冷却技术。被动的白天辐射冷却已被证明是一种有效的策略,是以辐射形式转移到冷外层空间的形式的有效策略,并实现冷却的目的而无需消耗能量或使用辅助设备。根据被动日间辐射冷却技术的原理,本文分析了白天辐射冷却膜和涂料的设计思想,并分析和阐述了辐射冷却材料的开发历史和最新研究进度。最后,结合当前在构建冷却和个人热管理方面的应用,该技术的未来开发方向已被验证。关键字:全球变暖;温室效应;白天辐射冷却;发展课程;建筑冷却;个人热管理
在此提出了对使用纳米材料和树枝状聚合物在水处理的广泛审查。审查包括使用纳米材料来应对各种挑战,包括去除染料,抗菌作用,光催化,重金属去除,纳米材料回收和去除纳米层。评论重点介绍了现有的文献瓶颈,并提出了潜在的疗法,重点是低成本,可回收和双金属纳米材料的可用性。此外,该评论突出了考虑实际样本收集和分析的重要性,例如使用工业废水作为样本进行分析。审查通过严格研究现有研究来对基于纳米材料的水处理技术发展的进步提供了宝贵的见解。
摘要:由聚(3,3-双(3,3-双基)(四甲基甲基)用四氢呋喃)制成的热固性聚氨酯弹性体和各种多功能异氰酸酯交联,以发现一种调节机械性能的新机制。额外的氢键基序(例如氨基甲酸酯或尿素)是在交叉链接机中构建的,被证明可以从本质上确定弹性体的刚度和韧性,而两个网络的共价交联密度严格控制在同一水平上。由傅立叶转换红外光谱(FTIR),动力学机械分析(DMA)和低场核磁共振(LFNMR)(lfnmr)(lfnmr)的证据(ftir)(ftir)(lfnmr),毫不犹豫地强调和支持聚氨酯热固件的机械性能的影响和支持。■简介聚氨酯弹性体是一种重要的粘弹性材料,在一定温度范围和较大的可逆变形性下具有相对较低的弹性模量。1,2
摘要:基于二维(2D)材料的微型和纳米机电系统(MEMS和NEMS)设备与硅基碱对应物相比揭示了新型功能和更高的灵敏度。2D材料的独特性能增强了对2D材料基于纳米机电设备和传感的需求。在过去的几十年中,使用与MEMS和NEMS集成的悬浮2D膜出现了质量和气体传感器,加速度计,压力传感器和麦克风的高性能敏感性。通过MEMS/NEMS传感器提供了积极感测的微小变化,例如在动量,温度和应变的小小变化的被动模式下传感。在这篇综述中,我们讨论了NEM和MEMS设备中使用的2D材料的材料准备方法,电子,光学和机械性能,除了设备操作原理外,制造路线。
电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,