摘要 纳米医学将纳米技术的前沿原理与医学科学相结合,为开发超越传统疗法局限性的先进药物输送系统提供了前所未有的机会。这些纳米级系统旨在通过优化药代动力学和生物分布来提高治疗的有效性、特异性和安全性,确保治疗剂以最小的副作用达到预期目标。本文深入分析了纳米材料在克服与药物输送相关的挑战方面的关键作用,包括绕过生物屏障、提高生物利用度和实现药物的控制释放的能力。尽管取得了这些令人鼓舞的进展,但纳米医学从研究到临床实践的转变仍面临重大障碍。该综述强调了患者异质性、生理变异性和纳米载体复杂的 ADME(吸收、分布、代谢、排泄)特征等关键障碍,这些障碍使治疗的可预测性和有效性变得复杂。此外,本文还讨论了组织渗透性有限、患者反应各异以及纳米材料表征需要标准化协议等问题,所有这些都阻碍了纳米医学在临床上的广泛应用。尽管如此,纳米医学在革新个性化癌症治疗方面的潜力仍然巨大。本文提倡加强转化研究和国际合作以克服这些挑战,为充分发挥纳米医学在精准肿瘤学及其他领域的能力铺平道路。
摘要由于它们在广泛的行业中具有独特的特性和潜在用途,因此纳米材料引起了很多关注。在本文中检查了纳米材料及其在环境技术中的许多特征。在本综述中有条理地检查了各种纳米材料,例如纳米颗粒,纳米线和纳米片及其制造技术,例如化学蒸气沉积,溶胶 - 凝胶程序和绿色合成。在水纯化,污染控制和环境修复中使用纳米材料是涵盖的一些关键应用。审查重点关注纳米材料技术的发展,以及如何彻底改变环境问题的解决方式。该分析通过研究最近的研究和进步,提供了纳米材料在可持续环境解决方案中有效应用可持续环境解决方案的见解。关键字:纳米颗粒,环境技术,应用,纳米材料。1。引言通过纳米级的大小和形式修饰的设备和材料的创建,合成,表征和使用都包含在纳米技术中。“ nano”来自希腊语“ nanos”或拉丁语“ nanus”,这两个都暗示着“矮人”。“ Nano”在许多不同的行业中都经常使用,包括产品营销。材料至少小于100纳米(NM)的材料被称为“纳米材料”,它们是纳米技术的基本基础。与微观材料相比,纳米颗粒小得多,尺寸约为109米。纳米材料的特殊物理化学特征固有地依赖于它们的维度和形式,使它们与散装材料区分开来,因为它们的尺寸很小[1]。纳米技术在几乎每个科学技术领域都发现了越来越多的用途。纳米科学的目标是理解原子的排列方式及其在纳米级的基本特征。另一方面,上述信息在原子层修改物质并创建具有独特属性的新纳米材料的现实使用被称为纳米技术。尽管纳米科学提供了基本的理解,但纳米技术利用这种理解来开发具有独特特征的新型材料和技术[2]。
1 英国伦敦东伦敦大学卫生、体育与生物科学学院联合与公共卫生系,2 英国伦敦约克圣约翰大学公共卫生系,3 英国吉林汉姆梅德韦 NHS 基金会信托研究与创新系,4 卡塔尔多哈哈马德·本·哈利法大学科学与工程学院可持续发展部,5 美国弗吉尼亚州布莱克斯堡弗吉尼亚理工大学化学系,6 美国图森亚利桑那大学化学与生物化学系,7 尼日利亚伊巴丹伊巴丹大学科学学院化学系,8 美国图森亚利桑那大学系统与工业工程系,9 美国斯塔克维尔密西西比州立大学兽医学院比较生物医学科学系
JGU MAINZ教授Katharina Landfester Max Planck聚合物研究所,Mainz Mainz Pol. Pol Besenius化学系,JGU Mainz Mainz教授Twan Lammers实验性分子成像,RWTH AACHEN ACHEN ACHEN ACHEN PROCH。 功能垫。 和生物制造,Würzburg大学JGU MAINZ教授Katharina Landfester Max Planck聚合物研究所,Mainz Mainz Pol. Pol Besenius化学系,JGU Mainz Mainz教授Twan Lammers实验性分子成像,RWTH AACHEN ACHEN ACHEN ACHEN PROCH。功能垫。和生物制造,Würzburg大学
应用程序。Science,370(6516),529-532。doi:10.1126/science.abi0540。6。Kulkarni,S。K. 2023。纳米技术:原理和实践。发布者。ISBN:978-1234567890。 7。 Sharma,G。K.和Singh,P。K.2020。 纳米脂化器:可持续性的创新解决方案ISBN:978-1234567890。7。Sharma,G。K.和Singh,P。K.2020。纳米脂化器:可持续性的创新解决方案
口腔癌是一种严重的健康问题,由于其发病率和死亡率很高,需要针对性治疗策略。早期发现癌细胞可大大改善预后和治疗效果。最近,纳米材料为癌症诊断和治疗开辟了一个充满新可能性的世界,提供了提高患者生活质量的创新方法。此外,改性纳米粒子使用专门设计的部分更精确地瞄准癌细胞。药物输送方法可以减少副作用并显著提高口腔癌治疗效果。此外,基于聚合物的药物输送方法旨在以可控的方式逐渐释放药物。此外,还讨论了与药物输送系统的联合治疗产生的协同效应。
由于半导体纳米粒子具有独特的机械、光学、光子和电学特性,科学界对其研究突飞猛进。[1-4] 借助 Wein2K 代码,他们最近报道了 Zn1–xMnxS (0 ≤ x ≤ 1) 的机械、结构、电学、磁性和光学行为。纳米材料的质量很大程度上取决于它们的表面积与体积的比,这会影响其中的几个属性。[5-8] 半导体的带隙是其最重要和最基本的特性之一。半导体材料的电学和光学特性从根本上受带隙的影响。[9-14] 因此,为了更好地了解它们的特性,研究 SCN 的带隙增长至关重要。半导体的大带隙使其在各种应用中都很有用。尽管硅光子纳米器件已经被广泛制造和利用,但体硅的间接和微小带隙限制了它的利用。许多理论和实验研究人员采取了与尺寸相关的带隙立场。[15-17] 利用光致发光光谱,
Rakhee Chaudhary博士是一位院士和研究人员,拥有25年的丰富经验。她于2002年获得了Jai Narain Vyas大学(拉贾斯坦邦)的Jai Narain Vyas大学的博士学位。她的研究显着有助于理解各种聚合物和二元混合物中的介电松弛和分子行为。Chaudhary的学术工作已广泛发表在知名的国际期刊上,包括Polymer International,Molecular Physics和《巴西物理学杂志》。除了她的研究贡献外,乔杜里博士还积极参加了许多会议,介绍论文并分享了她的见解。她还参与了专业发展活动,包括研讨会和培训计划以及创新的教学方法。Chaudhary在国际会议上担任演讲者和会议主席的角色进一步证明了其对学术卓越的承诺。 她致力于推进科学和教育,再加上她多产的研究成果,使她成为学术和科学界的宝贵资产。 目前,她正在担任基础科学学院院长,以及拉贾斯坦邦科塔的职业生涯Point University的学生福利院长Chaudhary在国际会议上担任演讲者和会议主席的角色进一步证明了其对学术卓越的承诺。她致力于推进科学和教育,再加上她多产的研究成果,使她成为学术和科学界的宝贵资产。目前,她正在担任基础科学学院院长,以及拉贾斯坦邦科塔的职业生涯Point University的学生福利院长
标题特别重点问题第一部分:癌症治疗类型的功能性纳米材料,文章https://clok.uclan.ac.uk/37922/doi https://doi.org/10.2217/nnm-2021-01-01-2021-0150日期2021引文2021引文SEN,tapas and papas and tapas and tapas and Mahmoudi extip iplotigiation(MAHMOUDI):癌症治疗中的纳米材料。纳米医学,16(11)。pp。879-882。ISSN 1743-5889创作者SEN,TAPAS和MAHMOUDI,MORTEZA
抽象目的 - 人类正在走向不朽的生活吗?如果是这样,哪些社会领域在实现这一目标中发挥了积极作用?为了理解这一点,该研究探讨了永生与健康和医疗旅游业之间的关系,以寻求它们之间的潜在关系,并最终询问有关这些旅游部门增长的困难问题,以及对他们进行更大监管的潜在需求。设计/方法论/方法 - 采用务实的哲学方法,并通过检查次要来源以及已发表的材料和报告的精致信息,该研究介绍了原始的理论知识以及探索旅游业和人类永生的模型。调查结果 - 本文认为,当今健康和医疗市场的持续增长可能导致一个世界,在我们的世界中,人类主义者和半机器人都在我们的世界中,甚至从智人接管。该研究提出了一个模型,强调了健康和医疗旅游市场的潜在作用,这说明了未来消费者服务的潜力,这些服务可能会进一步推动寻找永生的搜索。因此,这种市场和消费者的欲望是如何(在)直接支持人文对(非人类)不朽生存的渴望的。独创性/价值 - 如今,个人受到健康实践,医疗和化妆品的驱动,并愿意环游世界,以寻找能够执行所需程序或寻求价格更便宜的公司。这项研究提供了对这些复杂关系的新见解,并绘制了健康与医疗实践之间的隶属关系以及不朽的概念。