“H” 修订版最重要的变化之一是解决性别问题,以满足国防部长阿什顿·卡特备忘录《武装部队全面整合女性的实施指南》(2015 年 12 月 3 日)中的指示,该备忘录解决了女性人口的适应问题。卡特部长的备忘录指出,“各军种将开始执行其批准的计划,尽快开放所有军事职业专业、职业领域和分支,供女性加入。” MIL-STD-1472 的这一修订提供了设计标准,以消除男女参军不必要的障碍。例如,关于起重要求,设备必须符合混合性别起重要求并贴上相应的标签。因此,可能会增加某些装备和设备所需的起重器数量,或者需要重新设计或修改以减轻重量或增加起重点或手柄。实现真正“与作战相关且性别中立的标准”的目标反映了作战要求(例如经过作战验证的军事职业专业 [MOS] 相关起重标准)与尽可能广泛的用户的合理便利之间的平衡。必须确保此处概述的用于指导军事系统、设备和设施设计的标准的书写方式不会以可能限制军人职业发展的方式应用。采购活动有责任在设计中考虑所有因素,包括用户群体属性。为此,军事体能测试标准不适合用作设计标准或量化人类表现极限。解释和使用本设计标准时不应造成采购活动意外或故意定义其目标用户群体的情况,导致军队中被分配任务的男性或女性人数过多,无法有效互动和使用某些设备来完成任务。需求生成、开发过程、生产和最终产品采购都应协调一致,以解决性别中立指令。
在本文件中,我们提出了一套原则,以确保更新资金得到最佳利用并为新建筑提供指导。学术空间管理部门和大学建筑师办公室的代表表示,他们欢迎一套原则来指导未来的项目。这里提出的原则是在与全国各地的同事进行磋商和对学习空间文献的了解的基础上提出的,并且是基于我们对其他北美机构类似努力的研究。在最终达成一致意见后,我们将起草流程和指南,这些流程和指南将以这些原则为指导,并用于指导未来的学习空间项目。
摘要。大脑计算机界面(BCIS)是使人仅使用神经活动与机器进行交互的系统。这种相互作用对于用户而言可能是不直接的,因此培训方法是为了增加一个人的理解,信心和动机,这将在并行提高系统性能。要清楚地解决BCI用户培训协议设计中的当前问题,在这里分为介绍期和BCI相互作用期。首先,必须将介绍期(BCI交互之前)视为与用户培训的BCI交互同样重要。为了支持这一主张,对论文的审查表明,BCI绩效可以取决于此类入门期内提出的方法。为了使其设计标准化,人类计算机相互作用(HCI)的文献已调整为BCI上下文。第二,在用户BCI交互期间,接口可以采用大量的形式(2D,3D,大小,颜色等)和模态(视觉,听觉或触觉等)无需遵循任何设计标准或准则。也就是说,探索对神经活动的感知阶段的研究表明,可以从对某些物体的简单观察结果触发运动神经元,并取决于对象的属性(大小,位置等)神经反应可能差异很大。令人惊讶的是,在BCI背景下未研究感知阶段的影响。对BCI的介绍都不一致,以及可变的界面设计使得繁殖实验很困难,预测其结果并比较它们之间的结果。为了解决这些问题,提出了用于用户培训的协议设计标准化。
匹兹堡大学通过基于扫描分解的基于扫描模拟的反馈 - 馈线控制执行摘要摘要大大降低了激光粉池床融合添加剂制造的融化池和微观结构的变化:管理当地几次对激光粉末床融合(L-PBF)添加剂生产性能的影响是最高核心的一项优先级。因此,该程序的目的是开发一种基于仿真的反馈馈电控制方法,以维持整个L-PBF部分的熔体池和微观结构的一致性。特定的研究目标包括:(1)基于通过不同过程参数产生的测量熔体池维度开发经过实验验证的计算流体动力学(CFD)模型; (2)开发有效的混合CFD和FEM(有限元方法)模型,以模拟多轨,多层方案; (3)开发基于迭代模拟的反馈 - 馈线控制模型。该项目中的重点材料是基于镍的合金inconel 718,它广泛用于高温核应用中,例如核反应堆核心和热交换器。拟议的研究旨在解决核能社区中L-PBF进程的资格和更广泛采用的关键障碍。核芯和热交换器等核应用通常包含不同尺寸的几何特征,这会导致熔体池和微观结构在整个零件过程中差异很大。拟议研究中的关键创新是开发了混合CFD-FEM模拟模型,该模型为此基于反馈 - 反馈控制方法。通过使用准确的扫描分辨过程模拟,通过调整过程参数(激光功率和扫描速度)来最佳控制熔体池尺寸,预计熔体池和微观结构将在整个复杂部分中更加一致。通过减少新的L-PBF产品开发中昂贵的实验数量,可以以较低的成本进行熔体池和微观结构一致性的巨大改进,以更有效地执行资格。大多数L-PBF热过程模拟模型使用CFD或FEM;但是,前者是准确的,但在计算上非常昂贵,而后者是有效的,但不足以捕获熔体池的尺寸和温度,而随着局部几何形状的变化。在拟议的CIFEM(CFD施加的FEM)过程仿真模型中,瞬态热场是根据高保真CFD模拟计算的,并通过深度学习来推断。这些温度值是根据局部热环境所包含熔体池的局部FEM区域施加的,而其他地方的热传导则由FEM求解。开发的基于CIFEM的工艺模拟预计将是基于CFD的模拟效率的30-50倍,同时保持熔体池和温度场的预测准确性。使用CIFEM模型最佳地控制局部过程参数,预计熔体池尺寸的变化将减少50-70%,从而导致更一致的微观结构。因此,该项目将解决社区中的基本优先事项之一,并有助于促进更广泛的L-PBF程序在安全至关重要的核应用中。首席调查员:Albert C. TO,Albertto@pitt.edu
1. UNM FM 公用设施人员是唯一被授权操作 UNM 公用设施设备的一方。这包括所有连接到公用设施管道的设备,如阀门、开关、泵等,以及主配电系统,如主电气开关等。任何需要操作 UNM 公用设施设备的一方都必须通过 UNM 项目经理协调该操作。 2. 所有项目均应使用事先批准的控制系统承包商。控制系统的选择应由 UNM FM 工程与能源服务部进行,价格应在项目授予前协商和批准。UNM 设施管理能源服务部将负责项目的编程和图形开发。应为总承包商提供控制装置安装的津贴,以将其包含在投标价格中。 01 30 00 行政要求
自动设计是实现机器人群的一种吸引人的方法。在这种方法中,设计师指定了群体必须执行的任务,而优化算法搜索了控制软件,该控制软件使机器人能够执行给定的任务。传统上,自动设计的研究集中在单个设计标准指定的任务上,采用基于单目标优化算法的方法。在这项研究中,我们研究是否可以适应现有的方法来解决并发设计标准指定的任务。我们专注于双标准案例。我们用一群E-Puck机器人进行实验,必须执行两个任务的序列:序列中的每个任务都是独立的设计准则,自动方法在优化过程中必须处理。我们考虑通过加权总和,超音速或l 2 -norm聚集并发标准的模块化和神经进化方法。我们将它们的性能与一种原始自动模块化设计方法的Cansarina进行了比较。普通话将迭代的F-race作为优化算法整合,以在不汇总设计标准的情况下进行设计过程。通过物理机器人进行现实的模拟和演示的结果表明,最佳结果是通过模块化方法以及设计标准未汇总的。
4.17.1 限制性契约 ................................................................................................................ 12 4.17.2 规范和标准 ................................................................................................................ 12 4.17.3 系统布局 ................................................................................................................ 13 4.17.4 水力设计 ................................................................................................................ 14 4.17.5 设计流程 ................................................................................................................ 14 4.17.6 水力计算 ................................................................................................................ 17 4.17.7 管道 ............................................................................................................................. 17 4.17.8 清理人孔 ................................................................................................................ 18 4.17.9 空气阀 ............................................................................................................................. 18 4.17.10 排放位置 ................................................................................................................ 18 4.17.11 服务连接 ................................................................................................................ 18 4.17.12 私人泵单元一般要求...................................................................................................... 18 4.17.13 泵细节................................................................................................................... 19 4.17.14 泵室细节................................................................................................................... 20 4.17.15 管道细节................................................................................................................... 21 4.17.16 泵室通风................................................................................................................... 21 4.17.17 电气............................................................................................................................. 21 4.17.18 控件............................................................................................................................. 22 4.18 下水道系统抗震设计............................................................................................................. 23
2019年,世界绿色建筑委员会要求到2030年的具体碳8 40%。 9虽然加拿大的建筑部门在设计无需操作碳排放的建筑物方面取得了长足的进步,但解决具体的碳仍然是一个重要的挑战。 在2021年,CABGC发布了一张名为“体现碳:加拿大建筑物的底漆”的白皮书,可为建筑部门提供基本信息,以了解和解决新建筑物和现有建筑物中的体现碳。 该论文认为,在2022年至2050年之间,体现的碳可能占新建筑物排放量的90%以上。 这是在任何项目的设计阶段都需要发出的排放来源。2019年,世界绿色建筑委员会要求到2030年的具体碳8 40%。9虽然加拿大的建筑部门在设计无需操作碳排放的建筑物方面取得了长足的进步,但解决具体的碳仍然是一个重要的挑战。在2021年,CABGC发布了一张名为“体现碳:加拿大建筑物的底漆”的白皮书,可为建筑部门提供基本信息,以了解和解决新建筑物和现有建筑物中的体现碳。该论文认为,在2022年至2050年之间,体现的碳可能占新建筑物排放量的90%以上。这是在任何项目的设计阶段都需要发出的排放来源。
6.7.2 Definition of terms ........................................................................................................ 33 6.7.3 Materials ...................................................................................................................... 33 6.7.4 Design ......................................................................................................................... 33 6.7.5 Construction ................................................................................................................ 34 6.8 Certification of retaining structures ............................................................................................... 35