摘要 近年来,人工智能研究已显示出造福人类和社会的巨大潜力。尽管人工智能在分类和模式识别任务中的表现往往优于人类,但它在需要常识推理的复杂任务(如自然语言理解)方面仍然举步维艰。在这种情况下,当前人工智能模型的主要限制是:依赖性、可重复性、可信度、可解释性和可解释性。在本文中,我们提出了一个基于常识的神经符号框架,旨在克服情绪分析背景下的这些问题。具体而言,我们采用无监督和可重复的亚符号技术(如自回归语言模型和核方法)来构建可信的符号表示,将自然语言转换为一种原始语言,从而以完全可解释和可说明的方式从文本中提取极性。
1。Pigou,L。; Dieleman,s。; Kindermans,P.-J。 ; Schrauwen,B。 使用卷积神经网络的手语识别。 在计算机视觉中 - ECCV 2014研讨会; Agapito,L.,Bronstein,M.M.,Rother,C。,编辑。 ; Springer International Publishing:CHAN,2015年;卷。 8925,pp。 572–578 ISBN 9783319161778。 2。 Zaki,M.M。 ; Shaheen,S.I。 使用基于新视觉的功能组合的手语识别。 模式识别信2011,32,572–577,doi:10.1016/j.patrec.2010.11.013。 3。 Mukai,n。; Harada,n。; Chang,Y。基于分类树和机器学习的日本手指识别。 在2017年NICograph International(NICOINT)的会议记录中; IEEE:日本京都,2017年6月; pp。 19–24。 4。 bhat,a。; Yadav,V。;达根(Dargan) Yash手语使用深度学习进行文本转换。 在2022年第三届国际新兴技术会议论文集(INCET); IEEE:印度Belgaum,2022年5月27日; pp。 1-7。 5。 Gupta,Nikhil。 “字符语言转换。” Github,2023年10月29日,github.com/emnikhil/sign-language-to-text-conversion。 6。 jie huang; Wengang Zhou; Houqiang li;使用3D卷积神经网络来引导LI手语识别。 在2015年IEEE国际多媒体和博览会(ICME)会议录中; IEEE:意大利都灵,2015年6月; pp。 1-6。 7。 Liang,Z。; Liao,s。;胡,B。 8。 1-4。 9。Pigou,L。; Dieleman,s。; Kindermans,P.-J。; Schrauwen,B。使用卷积神经网络的手语识别。在计算机视觉中 - ECCV 2014研讨会; Agapito,L.,Bronstein,M.M.,Rother,C。,编辑。; Springer International Publishing:CHAN,2015年;卷。8925,pp。572–578 ISBN 9783319161778。2。Zaki,M.M。 ; Shaheen,S.I。 使用基于新视觉的功能组合的手语识别。 模式识别信2011,32,572–577,doi:10.1016/j.patrec.2010.11.013。 3。 Mukai,n。; Harada,n。; Chang,Y。基于分类树和机器学习的日本手指识别。 在2017年NICograph International(NICOINT)的会议记录中; IEEE:日本京都,2017年6月; pp。 19–24。 4。 bhat,a。; Yadav,V。;达根(Dargan) Yash手语使用深度学习进行文本转换。 在2022年第三届国际新兴技术会议论文集(INCET); IEEE:印度Belgaum,2022年5月27日; pp。 1-7。 5。 Gupta,Nikhil。 “字符语言转换。” Github,2023年10月29日,github.com/emnikhil/sign-language-to-text-conversion。 6。 jie huang; Wengang Zhou; Houqiang li;使用3D卷积神经网络来引导LI手语识别。 在2015年IEEE国际多媒体和博览会(ICME)会议录中; IEEE:意大利都灵,2015年6月; pp。 1-6。 7。 Liang,Z。; Liao,s。;胡,B。 8。 1-4。 9。Zaki,M.M。; Shaheen,S.I。使用基于新视觉的功能组合的手语识别。模式识别信2011,32,572–577,doi:10.1016/j.patrec.2010.11.013。3。Mukai,n。; Harada,n。; Chang,Y。基于分类树和机器学习的日本手指识别。 在2017年NICograph International(NICOINT)的会议记录中; IEEE:日本京都,2017年6月; pp。 19–24。 4。 bhat,a。; Yadav,V。;达根(Dargan) Yash手语使用深度学习进行文本转换。 在2022年第三届国际新兴技术会议论文集(INCET); IEEE:印度Belgaum,2022年5月27日; pp。 1-7。 5。 Gupta,Nikhil。 “字符语言转换。” Github,2023年10月29日,github.com/emnikhil/sign-language-to-text-conversion。 6。 jie huang; Wengang Zhou; Houqiang li;使用3D卷积神经网络来引导LI手语识别。 在2015年IEEE国际多媒体和博览会(ICME)会议录中; IEEE:意大利都灵,2015年6月; pp。 1-6。 7。 Liang,Z。; Liao,s。;胡,B。 8。 1-4。 9。Mukai,n。; Harada,n。; Chang,Y。基于分类树和机器学习的日本手指识别。在2017年NICograph International(NICOINT)的会议记录中; IEEE:日本京都,2017年6月; pp。19–24。4。bhat,a。; Yadav,V。;达根(Dargan) Yash手语使用深度学习进行文本转换。在2022年第三届国际新兴技术会议论文集(INCET); IEEE:印度Belgaum,2022年5月27日; pp。1-7。5。Gupta,Nikhil。 “字符语言转换。” Github,2023年10月29日,github.com/emnikhil/sign-language-to-text-conversion。 6。 jie huang; Wengang Zhou; Houqiang li;使用3D卷积神经网络来引导LI手语识别。 在2015年IEEE国际多媒体和博览会(ICME)会议录中; IEEE:意大利都灵,2015年6月; pp。 1-6。 7。 Liang,Z。; Liao,s。;胡,B。 8。 1-4。 9。Gupta,Nikhil。“字符语言转换。” Github,2023年10月29日,github.com/emnikhil/sign-language-to-text-conversion。6。jie huang; Wengang Zhou; Houqiang li;使用3D卷积神经网络来引导LI手语识别。在2015年IEEE国际多媒体和博览会(ICME)会议录中; IEEE:意大利都灵,2015年6月; pp。1-6。7。Liang,Z。; Liao,s。;胡,B。 8。 1-4。 9。Liang,Z。; Liao,s。;胡,B。8。1-4。9。3D卷积神经网络,用于动态手语识别。计算机期刊2018,61,1724–1736,doi:10.1093/comjnl/bxy049。Kanavos,A。; Papadimitriou,O。; mylonas,p。; Maragoudakis,M。使用深层卷积神经网络增强手语识别。 在第2023届第14届国际信息,情报,系统与应用程序(IISA)会议录中; IEEE:沃尔斯,希腊,2023年7月10日; pp。 张,p。; Wang,D。; Lu,H。多模式视觉跟踪:审查和实验比较。 comp。 Visual Media 2024,10,193–214,doi:10.1007/s41095-023-0345-5。Kanavos,A。; Papadimitriou,O。; mylonas,p。; Maragoudakis,M。使用深层卷积神经网络增强手语识别。在第2023届第14届国际信息,情报,系统与应用程序(IISA)会议录中; IEEE:沃尔斯,希腊,2023年7月10日; pp。张,p。; Wang,D。; Lu,H。多模式视觉跟踪:审查和实验比较。comp。Visual Media 2024,10,193–214,doi:10.1007/s41095-023-0345-5。
典型的微处理器由算术和逻辑单元(ALU)与控制单元相关联,以处理指令执行。几乎所有的微处理器都基于商店程序概念的原理。在商店编程概念中,程序或说明被顺序存储在要执行的存储位置中。要使用微处理器执行任何任务,它将由用户编程。因此,程序员必须对其内部资源,功能和支持说明有所了解。每个微处理器都有一组指令,这是由微处理器制造商提供的列表。微处理器的指令集以两种形式提供:二进制机器代码和mnemonics。微处理器以二进制数量0和1。以二进制模式形式的一组指令称为机器语言,我们很难理解。因此,将二进制模式赋予缩写名称,称为助记符,形成了汇编语言。使用称为“汇编程序”的应用程序,将汇编级语言转换为二进制机器级语言。使用的技术:用于芯片的半导体制造技术是:
I. 引言当今时代是人机交互的时代,人在银行和金融机构、国防和军事、教育、医疗和交通领域、预订系统、查询系统等各个领域都发挥着至关重要的作用。由于英语的存在,欠发达地区和农村社区无法使用技术,从而导致计算机网络和通信意识的传播。对于非英语用户来说,最好的解决方案可能是用母语与人互动的智能设备。印度是一个语言多元化的国家,根据 2001 年的人口普查,印度有 1599 种语言、122 种主要语言和 22 种官方语言,其中包括印地语、英语、尼泊尔语、克什米尔语、古吉拉特语、旁遮普语、梵语、孟加拉语、奥里雅语、曼尼普尔语、马拉地语、卡纳达语、孔卡尼语、泰米尔语、泰卢固语和乌尔都语 [1,2,3] 根据第 8 附表。这些是印度的自然使用语言。本文重点研究语言代码选择,即在一次话语中从一种语言转换为另一种语言,也称为代码转换。
人工智能 (AI) 是一个宽泛的术语,涵盖了复制复杂能力的各种技术和方法,包括自主决策和语言使用 (Truby 等人,2020)。它涉及计算机系统的理论和发展,这些系统能够执行传统上需要人类智能的任务,例如决策、语言转换、视觉洞察和语音识别。人工智能的特点是机器表现出与人类思维相关的认知功能,例如感知、逻辑、与环境的交互、获取和解决问题。该术语由约翰·麦卡锡 (John McCarthy) 于 1956 年提出,指的是理性地模仿人类行为和思维过程的系统 (McCarthy 等人,2006)。2000 年互联网泡沫爆发后,人工智能于 2005 年转向 Web 2.0 时代。尽管人工智能概念是几年前开发的,但人工智能的广泛接受仍处于早期阶段。数据和信息可用性的激增促使人们对人工智能及其重要性的研究不断增加(Larson,2021 年)。人工智能促进了银行业渐进式系统工具和突破性业务决策的应用。通过人工智能系统,银行可以建立客户访问权限、了解客户偏好并根据客户需求定制服务。
重要的注意此文件(“绿色融资框架”或“框架”)包含有关FastPartner(“ FastPartner”)的信息及其与附加环境标准(“绿色条款”)的潜在使用融资。通过参考或包含在本文档或本文档的未来版本中详细介绍的相关融资文档中包含绿色条款的任何融资都将被指定为绿色融资(“绿色融资”)。其他标签可能适用于特定类型的融资类型,例如绿色债券(“绿色债券”)绿色商业纸(“绿色商业纸”)或绿色贷款(“绿色贷款”)。根据融资文件的语言,本框架中的绿色条款可以根据需要或在当地管辖区首选的其他语言转换为其他语言。任何绿色融资都将包括对最近发表的绿色条款的参考或包含,该条款应在FastPartner网站上的框架中公开可用。只要任何绿色融资都没有偿还,绿色条款的相关版本将保持公开。投资者和第三方对本框架中信息的相关性和适当性进行独立评估,并在进入任何类型的交易类型或安排之前进行了必要的其他调查,以便将绿色条款适用,例如,对当前和未来的规范和未来的欧洲债券和绿色债券统一,绿色债券和绿色债券,绿色债券和绿色的绿色债券,绿色债券和绿色标准原则,绿色债券,绿色债券,绿色债券,绿色债券,绿色债券,绿色债券,以及绿色的绿色原则,绿色债券,绿色债券,绿色条款。此外,建议所有各方都必须审查适用的风险因素和特定的绿色融资类型,例如在相关融资文件,发行招股说明书或信息备忘录中。
执行视觉和语言导航(VLN)的能力已成为现代机器人系统中的基础组成部分。使用VLN,一个机器人有望根据语言说明[1-6]在没有提供的地图的情况下在看不见的环境周围导航。这不仅为人类提供了更好的相互作用,而且还通过语言加强了跨场所的概括。在本文中,我们通过腿部机器人(例如四倍或人形生物)进一步扩展了VLN的研究。使用腿而不是轮子可以使机器人在更具挑战性和混乱的场景中导航。如图1,我们的机器人可以在狭窄的人行道上浏览一个凌乱的实验室空间,从房屋中的房间过渡到房间,以及解决户外挑战性的环境,例如带有小岩石,孔和槽的不均匀地形。要将语言转换为动作,机器人需要对输入语言进行推理,并执行闭环计划以及低级控制。随着大语言模型(LLM)和视觉模型(VLM)的最新进展,已经开发了几个端到端视觉语言动作(VLA)系统[7-9]。这些系统对具有大规模的机器人操纵演示的通用Propose VLM微调,以产生低级动作。虽然在单个模型中统一推理和执行令人着迷,并且表现出令人鼓舞的结果,但值得深入研究以下问题:是否有更好的方法来代表量化的低级命令以外的动作?毕竟,LLM和VLM主要接受了自然语言的培训。当我们需要将推理转换为精确的非语言行动时,统一推理和执行变得具有挑战性。受到VLM [10,11]的最新进展的启发,我们提出了纳维拉(Navila)的提议,这是一个针对腿部机器人VLN的两个级别框架:VLM的两级框架,可以很好地输出中级动作(VLA),以“右转30度”的策略,以及训练的范围,以“转向30度”。VLA的中级动作输出无需低级命令传达位置和方向信息。该框架的优点是三个方面:(i)通过将低级执行与VLA分解,可以通过交换低级策略来在不同的机器人上应用相同的VLA; (ii)将动作表示为中级语言指令,可以通过不同的数据源进行VLA培训,包括真实的人类视频和推理质量检查任务。这可以增强推理功能,而不会过度拟合特定的低级命令,并可以利用现实世界数据进行概括; (iii)Navila在两个不同的时间尺度上运行:VLA通常是一个大型且计算密集的模型,以较低的频率运行,提供高级导航命令;运动策略实时运行。这种双频方法允许
语言障碍已经挑战了人类的交流数百年来,推动了对有效翻译解决方案桥梁语言鸿沟的持久追求。随着时间的流逝,已经出现了各种方法来解决语言差异的复杂性,从而使跨文化的流体相互作用更多。在当今相互联系的世界中,关键信息和信息通常以各种官方语言传达,具体取决于国家。这种多样性在丰富的同时,可能会阻碍旅行者和专业人士,他们可能很难理解和行动重要的信息,而无需熟练当地语言。传统工具,例如口袋字典和在线翻译服务,提供了一些支持,但通常缺乏实时响应能力和上下文敏感精度所需的细微理解。随着全球化的增长,对高质量,实时翻译的需求变得更加紧迫。这个项目,具有自适应增强学习的实时语言翻译器,介绍了一个突破性解决方案:一个基于Web的应用程序,将实时翻译功能与增强学习结合在一起,以根据用户反馈来提高翻译质量。使用简洁的交互式界面构建,该应用程序利用Google翻译API进行准确的语言翻译,同时实现了Q学习算法,该算法会随着时间的推移适应并增强其性能。通过此系统,用户可以选择源和目标语言,输入文本进行翻译,并接收即时,高质量的翻译输出。机器翻译(MT)是将文本从一种语言转换为另一种语言的过程,随着深度学习模型(例如sequence-tosequence(SEQ2SEQ)和Transformer模型)的进步,已经显着发展。及其编码器模型的Seq2Seq模型将输入句子转换为生成目标语言翻译的上下文向量。与此同时,在“注意就是您需要的全部”中引入的变压器模型(Vaswani等,2017),使用自我注意的机制来指出相关的句子组件,从而大大提高了翻译质量。在此项目中,增强学习(RL)用于通过创建一个自适应反馈循环来增强MT过程,该反馈环将转换为用户需求量。转换模型在此设置中充当“代理”,根据用户评分做出翻译决策并接收反馈或“奖励”。通过QLearning算法处理的此反馈使该模型能够更新其策略,并完善未来翻译以最大程度地提高用户满意度。随着用户的审查和评估翻译,系统将学习输出的输出最佳的用户满意度,个性化体验并随着时间的推移提高整体准确性。这种高级机器翻译和自适应学习的独特混合物不仅增强了翻译质量,而且还创建了一个以用户为中心的工具,该工具对个人偏好有反应,提供了一种无缝,直观的体验。通过MT和RL的这种创新融合,该项目旨在重新定义跨语言交流,创建智能的自适应翻译系统,从而弥合语言差距并增强全球互动。