抽象的基于卫星 - 长距离 - 无距离 - 空间量子密钥分布有可能实现全球量子安全通信网络。检测从空间发送的微弱量子光脉冲需要高度准确且健壮的经典计时系统才能从噪声中挑出信号,并允许对发送和接收的钥匙位进行对帐。对于这种高损耗应用,提出了基于DE Bruijn序列的断层 - 耐受性同步信号编码和解码方案。在实验室条件下测试了代表性的同步时间系统,并且即使在高损失下,它也证明了误差校正算法的高容差。还讨论了该解决方案的性能限制,并分析了方案和估计的计算开销的最大误差耐受性,从而可以在实际的时间系统上实现 - 芯片上实现。该解决方案不仅可以用于同步高损耗通道,例如卫星和地面站之间的通道,而且还可以扩展到具有低损耗,较高误差率的应用,而且需要可靠的同步,例如量子和非量子通信在地面上的自由行空间或光纤空间上。
在量子电路内层进行的测量(即电路中部测量)是一种有用的量子计算原语,最显著的特点是用于量子误差校正。电路中部测量既有经典输出,也有量子输出,因此它们可能会受到终止量子电路的测量所不存在的误差模式的影响。在这里,我们展示了如何使用一种我们称之为量子仪器线性门集断层扫描 (QILGST) 的技术来表征由量子仪器建模的电路中部测量。然后,我们应用这种技术来表征多量子位系统内超导 transmon 量子位的色散测量。通过改变测量脉冲和后续门之间的延迟时间,我们探索了残余腔光子群对测量误差的影响。QILGST 可以解析不同的误差模式并量化测量的总误差;在我们的实验中,对于超过 1000 纳秒的延迟时间,我们测得的总误差率(即半钻石距离)为!! = 8.1 ± 1.4%,读出保真度为 97.0 ± 0.3%,测量 0 和 1 时输出量子态保真度分别为 96.7 ± 0.6% 和 93.7 ± 0.7%。
“擦除量子比特”中的主要噪声是擦除 — 一种可以检测到其发生和位置的错误。擦除量子比特有可能减少与容错相关的开销。迄今为止,对擦除量子比特的研究主要集中在量子计算和量子网络应用上。在这里,我们考虑擦除量子比特在量子传感和计量方面的适用性。我们从理论上表明,对于相同级别的噪声,与非擦除量子比特相比,擦除量子比特可以充当更精确的传感器或时钟。我们通过人工将擦除误差(以原子损失的形式)或失相误差注入差分光学晶格时钟比较来实验证明这一点,并观察到在相同注入误差率的情况下,擦除误差的精度有所提高。在具有重复测量周期的时钟中,擦除可以将稳定性提高 2 倍。擦除量子比特对传感的类似好处可以在其他量子平台(如里德堡原子和超导量子比特)中实现。
在量子电路的内部层内发生的测量(中路测量)是有用的量子计算原始的,最著名的是用于量子误差纠正。中路测量值同时具有经典和量子输出,因此它们可能会受到误差模式,这些模式对于终止量子电路的测量不存在。在这里,我们展示了如何使用一种称为量子仪器线性栅极组合层摄影(QILGST)的技术来表征由量子仪器建模的中路测量值。然后,我们将此技术应用于在多Qubit系统内的超导式传输矩形上表征分散测量。通过改变测量脉冲和随后的门之间的延迟时间,我们探讨了残留空腔光子群体对测量误差的影响。QILGST可以解决不同的误差模式并量化测量中的总误差;在我们的实验中,对于1000 ns以上的延迟时间,我们测量了总误差率(即半钻石距离)!!= 8.1±1.4%,读出97.0±0.3%的读数和输出量子态填充率分别为96.7±0.6%和93.7±0.7%,分别为0和1时。
随着6G技术的出现,目前正在将无线通信领域推向新的边界。这项先进的技术需要大幅提高数据速率和处理速度,同时需要用于现实世界实用性的能源解决方案。在这项工作中,我们应用了一个名为Echo State Network(ESN)的神经科学启发的机器学习模型,以在Massive Mimo-Ofdm Systems中的符号检测的关键任务,这是6G网络的关键技术。我们的工作涵盖了硬件加速储层神经元体系结构的设计,以加快基于ESN的符号检测器。然后,通过在现实世界中的Xilinx Virtex-7 FPGA板上的概念证明进行验证。实验结果表明,与传统的MIMO符号检测方法(如线性最小均方根误差)相比,在一系列MIMO配置中,我们的符号检测器设计的性能和可扩展性很高。我们的发现还确认了整个系统的性能和可行性,以低误差率,低资源利用率和高吞吐量的形式反映。
起初,量子纠错理论只是量子信息和量子计算领域的一个小领域。物理学家们主要对纠缠的抽象概念和与热力学的一些联系感兴趣。量子纠错的发展非常缓慢,直到 Schor 提出因式分解算法后才开始成为边缘话题。因式分解算法表明,量子计算机可以在多项式时间内分解数字,而传统计算机则需要指数时间。然而,即使有了这个结果,当时的物理学家也不相信量子计算会成为可能,因为相干量子态极其脆弱,因此建立一个大规模、可控、误差率低的量子系统是一种幻想。1995 年初,有人提出了一些能够纠正量子数据的代码。这是量子计算早期的重大发展之一,也是让物理学界相信量子计算是可能的起点。通过比较经典计算机和量子计算机的错误率,很容易理解量子纠错的重要性。经典计算机的平均错误率为 10 − 18 ,而当今最好的量子计算机的错误率为 10 − 4 。实际上,几乎无法想象它们的错误率会超过 10 − 7 。换句话说,在量子计算中,除非我们能够进行纠错,否则我们将无法进行任何相关计算。
摘要在这项工作中,将牛津纳米孔测序作为量化放大DNA异质性的可访问方法。此方法可以快速量化缺失,插入和取代,每个突变误差的概率及其在复制序列中的位置。放大技术测试的是传统的聚合酶链反应(PCR),具有不同水平的聚合酶保真度(OnETAQ,phusion和Q5),以及滚动圆扩增(RCA)和PHI29聚合酶。还评估了使用细菌扩增的质粒扩增。通过分析每个样本中大量序列中误差的分布,我们检查了每个样本中的异质性和误差模式。该分析表明,Q5和渗流聚合酶表现出在扩增的DNA中观察到的最低错误率。作为二级验证,我们分析了使用细胞游离表达与放大DNA合成的SFGFP荧光蛋白的发射光谱。易易受错误的聚合酶链反应证实了报道蛋白发射光谱峰宽度与DNA误差率的依赖性。所提出的纳米孔测序方法是量化其他基因扩增技术准确性的路线图,从而使它们被发现,从而实现了所需蛋白质的更无均匀的细胞表达。
我们考虑了读出误差和相干误差(即确定性相位旋转)对表面代码的综合影响。我们使用一种最近开发的数值方法,通过将物理量子位映射到马约拉纳费米子。我们展示了如何在存在读出误差的情况下使用这种方法,在现象学层面上进行处理:完美的投影测量,可能记录错误的结果,以及多次重复的测量。我们发现这种错误组合的阈值,其错误率接近相应非相干错误通道(随机 Pauli-Z 和读出误差)的阈值。使用最坏情况保真度作为逻辑错误的度量,阈值错误率的值为 2.6%。低于阈值,扩大代码会导致逻辑级错误的相干性迅速丧失,但错误率高于相应非相干错误通道的错误率。我们还分别改变了相干和读出误差率,发现表面代码对相干误差比对读出误差更敏感。我们的工作将最近关于完美读出的相干误差的结果扩展到实验上更现实的情况,即读出误差也会发生的情况。
本报告基于一项全国代表性调查的发现 - 美国思想的气候变化 - 由耶鲁大学气候变化传播计划和乔治·梅森大学气候变化通信中心共同开展。面试日期:10月20日至2023年。访谈:1,033名成年人(18岁以上)。平均误差率:+/- 3个百分点在95%的置信度下。这项研究是由第11小时项目,能源基金会,麦克阿瑟基金会,海灵 - 西蒙斯基金会,国王慈善基金会和格兰瑟姆基金会资助的。美国思想中的气候变化是由耶鲁大学气候变化传播计划和乔治·梅森大学气候变化传播中心共同进行的。Principal Investigators: Anthony Leiserowitz, PhD Yale Program on Climate Change Communication Edward Maibach, MPH, PhD George Mason University Center for Climate Change Communication Seth Rosenthal, PhD Yale Program on Climate Change Communication John Kotcher, PhD George Mason University Center for Climate Change Communication For all media and other inquiries, please email: Yale Program on Climate Change Communication:
arge⁃scale软件系统将面临一个特定的chal⁃lenge,即是异常检测。系统日志为异常检测提供了简单而常见的信息源。通常,管理员手动检查日志文件,并搜索问题⁃相关的日志条目,这是错误的且TIMETEDIOUS。为了减少人类EF⁃堡垒,研究人员提出了许多自动日志探测器[1⁃19]。但是,这些检测器在皇家世界工业系统中是不感染的。首先,大多数检测器典型地通过识别统计异常值来操作。特定检测器对系统的效用取决于其统计异常值与系统异常症状的一致性。通常,统计异常值和实际系统异常之间的差距可能会导致高误差率,并容易使异常检测器无法使用。第二,在系统更新期间可能会出现新的异常类型,并与现有的异常检测器发生冲突以产生误报。第三,杂项和复杂的对数数据包含巨大的噪声。这种噪声可能会误导探测器并进一步增加误报。