摘要:近年来,量子计算机的发展取得了显著的进展。为进一步发展,阐明量子噪声和环境噪声引起的误差的性质非常重要。然而,随着量子处理器系统规模的扩大,人们指出会出现一种新型的量子误差,如非线性误差。信息论中如何处理这种新效应尚不清楚。首先,应该明确量子比特误差概率的特征,作为信息论中的通信信道误差模型。本文旨在综述信息论者未来可能面临的量子噪声效应的建模进展,以应对上述非平凡误差。本文解释了一个信道误差模型来表示由于新量子噪声引起的误差概率的奇怪性质。通过该模型,给出了由量子递归效应、集体弛豫和外力等引起的误差概率特征的具体例子。因此,我们无需经历复杂的物理现象就能理解经典信息论中不存在的误差概率奇怪特征的含义。
量子计量有望成为量子技术的一个突出用例。然而,噪声很容易降低这些量子探测状态的质量,并抵消它们在无噪声环境中提供的量子优势。虽然量子纠错 (QEC) 可以帮助解决噪声问题,但容错方法对于近期使用来说资源过于密集。因此,需要一种 (近期) 稳健的计量策略,该策略可轻松适应未来基于 QEC 的量子计量。在这里,我们通过研究由最小距离 d ≥ t + 1 的 [ n, k, d ] 二进制块码构成的量子探测状态的性能,提出了这样一种架构。此类状态可以解释为 CSS 码的逻辑 | + + · · · + ⟩ 状态,其逻辑 X 组由上述二进制码定义。当量子探测状态的常数 t 个量子比特被擦除时,利用量子 Fisher 信息 (QFI),我们证明由此产生的噪声探测可以给出磁场估计值,其精度与相应 2 t 缩短代码的权重分布的方差成反比。此外,我们证明,如果 C 是任何与长度为 n 的线性内部重复代码连接的代码,那么量子计量中就可能存在量子优势。这意味着,给定任何恒定长度的 CSS 代码,与长度为 n 的线性重复代码的连接对于具有恒定擦除误差数量的量子计量是渐近最优的。除了基本的 QFI 结果之外,我们还明确构建了一个可观测量,当在这种受噪声代码启发的探测状态上测量时,它可以对磁场强度产生一定的精度,并且在磁场强度消失的极限下也表现出量子优势。我们强调,尽管使用了编码理论方法,但我们的结果并不涉及综合征测量或错误校正。我们用 Reed-Muller 码构建的探测状态示例来补充我们的结果。
摘要:微机电系统 (MEMS) 的发展进步使得制造廉价、小尺寸的加速度计和陀螺仪成为可能,它们被用于许多需要进行全球定位系统 (GPS) 和惯性导航系统 (INS) 集成的应用中,即,识别轨道缺陷、地面和行人导航、无人驾驶飞行器 (UAV)、许多平台的稳定等。虽然这些 MEMS 传感器成本低廉,但它们会出现不同的误差,从而在短时间内降低导航系统的准确性。因此,有必要对这些错误进行适当的建模,以尽量减少这些错误,从而提高系统性能。在本研究中,我们展示并比较了目前用于分析影响这些传感器的随机误差的最常用技术:我们详细研究了自相关、Allan 方差 (AV) 和功率谱密度 (PSD) 技术。随后,还实现了惯性传感器的分析和建模,其中结合了自回归 (AR) 滤波器和小波去噪。由于低成本 INS(MEMS 级)的误差源包括短期(高频)和长期(低频)分量,我们引入了一种通过对 Allan 方差、小波去噪和选择分解级别进行完整分析来补偿这些误差项的方法,以实现这些技术的适当组合。最后,为了评估使用这些技术获得的随机模型,扩展卡尔曼
摘要 — 量子计算机能够比传统的经典计算机在更短的时间内完成大规模计算。由于量子计算机是在微观物理系统中实现的,因此由于环境之间的相互作用,量子态不可避免地会发生意外变化,从而导致计算错误。因此,需要量子误差校正来检测和纠正已发生的错误。在本文中,我们提出了用于量子误差校正的量子计算机架构,考虑到硅量子点量子计算机的组件在稀释制冷机内外分为多个温度层。控制量子位的模拟信号在稀释制冷机内的 4 K 台上精确生成,而实时数字处理在稀释制冷机外进行。然后,我们通过实验演示了用于量子误差校正的数字控制序列,并结合了在量子计算过程中模拟量子态的模拟器。包括确定前馈操作和传输前馈操作命令在内的实时处理由稀释制冷机外的 FPGA 在 0.01 毫秒内进行,以进行位翻转误差校正。与假设的弛豫时间相比,这是一个足够短的时间,而假设的弛豫时间是量子态可以保留的近似时间,这意味着我们提出的架构适用于量子误差校正。索引术语——量子计算机、量子计算、架构、量子误差校正、前馈
以及可用的肝组织学。在免疫抑制治疗或已前往HEV -1和-2感染的地区的患者中,患者被排除在外。患有症状性急性肝炎的患者和与HEV相关的PT患者均回顾性地包括[4] [4],并在2022年2月1日至2020年10月31日之间。献血者也被参与的瑞士卫生中心(Lausanne,Bern,Bern,Zurich)回顾性和前瞻性纳入了回顾性和前瞻性。在此期间(从1月至2021年5月),瑞士联邦公共卫生办公室记录了不寻常的急性HEV感染浪潮,主要由基因型3H_S引起。[18]
我们的研究调查了牛津纳米孔技术的有效性,通过重新陈述33个长达3年的克雷伯氏菌肺炎爆发的33个分离株,并以Illumina的短阅读测序数据作为参考点。我们通过对牛津纳米孔技术测序的基因组进行CGMLST和系统发育分析检测到相当大的基本误差,从而导致从暴发群集中错误排除某些与暴发有关的菌株。附近的甲基化位点会导致这些误差,也可以在肺炎K. k. tneumoniae以外的其他物种中找到。基于这些数据,我们探讨了基于PCR的测序和掩盖策略,这些策略既成功解决这些不准确性,又可以确保准确的爆发追踪。我们将掩盖策略作为生物信息学工作流(MPOA),以无参考的方式识别和掩盖有问题的基因组位置。我们的研究强调了使用牛津纳米孔技术对原核生物进行测序的局限性,尤其是用于研究暴发。对于牛津纳米孔技术无法等待进一步的技术发展的时间关键项目,我们的研究建议我们基于PCR的测序或使用我们提供的生物信息学工作流。我们建议在发布结果时应提供基于质量的基因组质量基因组。
无论是在制造阶段还是在量子组合过程中,例如由于诸如宇宙射线之类的高能量事件,因此构成错误校正代码的Qubits可能会呈现。此类缺陷可能对应于单个Qubits或簇,并可能充分破坏代码以生成逻辑错误。在本文中,我们探索了一种新型的自适应方法,用于在有缺陷的晶格上进行表面代码量子误差校正。我们表明,结合适当的缺陷检测算法算法和确定区域的隔离,使人们可以以量子代码量的大小保留量子误差校正的优势,而量子的费用为量子的尺寸,该量子尺寸与缺陷大小相比。我们的数字表明,代码的阈值不必受到显着影响;例如,对于某个SceNario,在每个逻辑量子位中以相对较高的速率反复出现小缺陷,噪声阈值为2。7%(与2.9%)。我们还与强大的子阈值缩放相关,仅降低了缺陷尺寸的代码距离。这些结果为大规模量子计算机的实验实施铺平了道路,在该实施中将是不可避免的。
对振动分子光谱的准确模拟在常规计算机上很昂贵。与电子结构问题相比,量子计算机的振动结构问题的研究较少。在这项工作中,我们准确地估算了量子量的量子,例如逻辑柜和量子门的数量,这些量子是在实体量子计算机上计算的振动结构所需的。我们的AP-PRACH基于量子相估计,并专注于耐断层的量子设备。除了通用化学化合物的渐近阶段外,我们还对模拟在振动结构计算中所需的量子资源进行了更详细的分析。杠杆嵌套的换向器,与先前的研究相比,我们对猪肉误差进行了深入的定量分析。最终,这项工作是分析振动结构模拟中潜在的量子优势的指南。
Barton, N、Lien, R 和 Lunde, J 1974,《隧道支护设计中的岩体工程分类》,《岩石力学》,第 6 卷,第 189-236 页。Bieniawski, ZT 1974,《岩石材料强度估算》,《南非矿业冶金研究所杂志》,第 74 卷,第 8 期,第 312-320 页,https://doi.org/10.1016/0148-9062(74)91782-3 Bieniawski, ZT 1989,《工程岩体分类:采矿、土木和石油工程工程师和地质学家完整手册》,Wiley-Interscience 出版物 - John Wiley & Sons。 Carranza-Torres, C 和 Fairhurst, C 2000,《隧道设计中收敛约束法在满足 Hoek-Brown 破坏准则的岩体中的应用》,《隧道与地下空间技术》,第 15 卷,第 2 期,第 187-213 页。Deere, DU 和 Deere, DW 1988,《岩石质量指标 (RQD) 的实践》,L Kirkaldie (ed),《工程用岩石分类系统》,ASTM STP 984,ASTM International,西康舍霍肯。
本文介绍了一种新型编队飞行任务 Cal X-1 的相对导航和卫星间指向的误差预算。尽管进行了广泛的地面校准活动,但轨道 X 射线天文台的交叉比较表明,测量的天体源通量存在超过 10% 的系统性差异。Cal X-1 任务将通过使用一对编队飞行的 SmallSat 建立在轨 X 射线通量标准来解决这一问题。第一艘航天器将搭载一台 X 射线望远镜,而第二艘航天器将搭载一个绝对校准的 X 射线源。任务设计需要精确的卫星间指向,但由于尺寸、重量、功率和成本方面的限制,无法使用专用硬件。本文试图证明通过先进的相对导航技术可以满足具有挑战性的卫星间指向要求。高保真模拟展示了合适的相对导航系统的性能。接下来,开发一个数学模型,该模型考虑了相对导航、姿态确定和航天器结构组装引起的误差,以便计算指向知识误差。通过将该指向知识误差与 Cal X-1 任务的要求进行比较,证明了所提出的卫星间指向方法的可行性。
