获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
对网络能力的不断升级的要求催化了太空层多路复用(SDM)技术的采用。随着多核光纤(MCF)制造的持续进展,基于MCF的SDM网络被定位为可行且有前途的解决方案,可在多维光学网络中实现更高的传输能力。然而,借助基于MCF的SDM网络提供的广泛网络资源带来了传统路由,调制,频谱和核心分配(RMSCA)方法的挑战,以实现适当的性能。本文提出了一种基于基于MCF的弹性光网(MCF-eons)的深钢筋学习(DRL)的RMSCA方法。在解决方案中,具有基本网络信息和碎片感知奖励函数的新型状态表示旨在指导代理学习有效的RMSCA策略。此外,我们采用了一种近端策略优化算法,该算法采用动作面膜来提高DRL代理的采样效率并加快培训过程。用两个不同的网络拓扑评估了所提出的算法的性能,其交通负荷不同,纤维具有不同数量的核心。结果证实,所提出的算法在将服务阻断概率降低约83%和51%方面优于启发式方法和最先进的基于DRL的RMSCA算法。此外,提出的算法可以应用于具有和没有核心切换功能的网络,并且具有与现实世界部署要求兼容的推理复杂性。