冷分子为量子信息、冷化学和精密测量提供了极好的平台。某些分子对标准模型物理具有超强的灵敏度,例如电子的电偶极矩 (eEDM)。分子离子很容易被捕获,因此对于灵敏度随询问时间变化的精密测量特别有吸引力。在这里,我们展示了在量子投影噪声 (QPN) 极限下具有秒级相干性的自旋进动测量,其中数百个被捕获的分子离子被选中,因为它们对 eEDM 敏感,而不是它们对状态控制和读出的适应性。取向分辨的共振光解离使我们能够同时测量具有相反 eEDM 灵敏度的两个量子态,达到 QPN 极限并充分利用高计数率和长相干性。
电荷注入设备(CID)大约与几乎统一的电荷偶联装置(CCD)开发,但在科学成像群落中没有获得相同的认可。这主要是由于设计放大器必须“看到”整个设备的电容固有固有的较高读取噪声,而CCD由于小读出电容器而具有很低的读取噪声。然而,CID在历史上也表现出与CCD的辐射公差相比,其中一些设计在Mega-Rad范围内展示了功能。CCD众所周知,易受电离和非电离辐射损害的影响,这可以通过大大降低电荷传输效率,从而限制其在空间应用中的性能,从而从一个像素转移到下一个像素。
了解奖励和惩罚对于生存至关重要。经典研究表明,哺乳动物中脑多巴胺神经元环与强化学习算法的奖励预测误差之间存在令人印象深刻的对应关系,这表示实际奖励与预测平均奖励之间的差异。然而,不仅要学习潜在奖励的平均值,还要学习其完整分布,这可能是有益的。机器学习的最新进展揭示了一套生物学上可行的算法,用于根据经验重建这种奖励分布。在这里,我们回顾了这些算法的数学基础以及它们在神经生物学上实现的初步证据。最后,我们重点介绍了有关这些分布代码的电路计算和行为读出的未解决的问题。
这些协议解决了限制残障人士使用疫苗接种安排网站的障碍,例如,必填信息(如姓和名、生日和邮政编码)无法向屏幕阅读器用户“读出”,可用的疫苗接种时间无法供使用键盘的用户“选择”。这些协议要求相关疫苗接种网站满足某些可访问性标准,定期测试包含疫苗接种安排和 COVID-19 疫苗信息的网站页面,并迅速解决任何阻碍残障人士使用这些页面的问题。由于疫苗可能挽救生命,这项工作凸显了网站可访问性对残障人士至关重要。
参考文献1。Divincenzo,D。P.量子计算的物理实施。Fortschritte der Physik:物理进展48,771(2000)。2。Ladd,T。D.等。量子计算机。自然464,45(2010)。3。Ito,T。等。四个四倍量子点中的四个单旋rabi振荡。应用物理信函113,093102(2018)。4。Mills,A。R.等。将单个电荷穿过一维硅量子点。自然传播10,1063(2019)。5。Mortemousque,P.A。等。在二维量子点阵列中对单个电子旋转的相干控制。自然纳米技术(2020)。6。损失,D。,Divincenzo,D。P.用量子点进行量子计算。物理评论A 57,120(1998)。7。Veldhorst,M。等。具有容忍控制的可寻址量子点量子量子。自然纳米技术9,981(2014)。8。Veldhorst,M。等。硅中的两分逻辑门。自然526,410(2015)。9。Takeda,K。等。 天然硅量子点中的易耐故障可寻址自旋值。 科学进步2,E1600694(2016)。 10。 Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Takeda,K。等。天然硅量子点中的易耐故障可寻址自旋值。科学进步2,E1600694(2016)。10。Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Watson,T。F.等。硅中可编程的两分量子处理器。自然555,633(2018)。11。Zajac,D。M.等。电子旋转的共同驱动的CNOT门。科学359,439(2018)。12。Yoneda,J。等。 一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。 自然纳米技术13,102(2018)。 13。 Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Yoneda,J。等。一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。自然纳米技术13,102(2018)。13。Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Takeda,K。等。在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。NPJ量子信息4,1(2018)。14。Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Huang,W。等。硅在硅中的两倍大门的保真基准。自然569,532(2019)。15。Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Zheng,G。等。使用芯片谐振器在硅中快速基于门的自旋读出。自然纳米技术14,742(2019)。16。Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Volk,C。等。通过高频累积门对Si/Sige量子点的快速电荷传感。Nano Letters 19,5628(2019)。
TSA5055T 是一款专为卫星电视调谐系统设计的单芯片 PLL 频率合成器。控制数据通过 I 2 C 总线输入;需要五个串行字节来寻址设备、选择振荡器频率、编程六个输出端口并设置电荷泵电流。其中四个端口也可用作输入端口(3 个通用 I/O 端口、一个 A/D 转换器)。在 READ 操作期间,可以从 SDA 线上的 TSA5055T 读出有关这些端口的数字信息(一个状态字节)。当循环处于“锁定”状态时会设置一个标志,并在 READ 操作期间读取该标志。该设备有一个固定的 I 2 C 总线地址和 3 个可编程地址,通过应用
被执行,并且除了在条件跳转指令执行期间之外,在每个指令周期结束时加一。在步骤 1 期间,控制计数器操作存储器选择电路,并且在步骤 1 结束时,包含下一条指令的指定存储器字被读入静态寄存器。两个左边的位被解码为操作,并且该信息被发送到功能选择电路,在那里,结合步进计数器和时钟信号,生成所有指令所需的门控脉冲。两个右边的位指定操作数地址,被发送到存储器选择电路,允许读出所需的数据字。所有这些都发生在步骤 1 期间。实际的指令执行在最后三个步骤中的一些或全部期间进行。