对高速数据传输的迫切需求加上纳米技术节点的发展,正推动通信标准(如 5G)向毫米波频段发展。毫米波频段的使用还涉及汽车雷达、成像或医疗应用。在更高的频段,用户可以受益于更宽的带宽,从而可以获得所需的数据速率或雷达分辨率的提升。另一方面,消费类应用需要低成本的解决方案,例如 CMOS 或 BiCMOS 技术提供的解决方案。然而,虽然 BiCMOS 技术中晶体管的工作频率 (𝑓)/𝑓 *+,) 高于 400 GHz 以满足毫米波应用 [1],但这些技术中无源可调元件的种类仅限于少数几种变容二极管或开关电感器。可调元件可用于执行必要的射频功能,例如 VCO 调谐 [2]、相移控制,尤其是构建波束控制系统以补偿自由空间中路径损耗的增加 [3],或用于校准目的 [4] 等。可调设备的性能可通过调谐范围和品质因数来量化
一般排除和限制 以下是本健康计划不承保的一些服务和用品的列表。完整的排除列表可在 premera.com/sebb 上找到。 以下任何治疗、手术、服务、药物或用品均不提供福利: • 非医学必需的服务 • 整容手术或重建手术(特殊规定的除外) • 实验性或研究性服务 • 辅助生殖 • 减肥药物、食品和锻炼计划 • 超过特定福利最高限额的服务 • 由其他类型保险支付的服务,例如财产保险、责任保险或机动车保险 • 您未受本计划承保时获得的服务 • 提供者的执照或认证不允许其提供的服务。它也不承保没有国家要求的执照或认证的提供者。 • 性功能障碍 • 绝育逆转 某些服务、设备和药物需要事先获得 Premera 的授权才能获得承保。要了解在您接受保险之前需要获得您的计划预先批准的服务和程序的列表,请访问 premera.com/sebb 。
作者对半结构化访谈,焦点小组,圆桌会议和讲习班的参与者表示感谢。此外,他们感谢Katya Brooks(英国卫生安全局),Kathryn Brown(野生动物信托基金会),Kamya Choudhary(Grantham Research Institute,伦敦经济学和政治学院),Annette Figueiredo(伦敦大当局),伦敦大当局),Shakoor Hajat(Shakoor Hajat(Shakoor Hajat)(Shakoor Hajat(Shakoor Hajat)) Khosla(牛津大学),Andy Love(英国阴影),Anna Mavrogianni(伦敦大学)和Swenja Surminski(Marsh McLennan/LSE)对报告和研究的反馈。本报告致力于对Adeline Stuart-Watt的记忆,后者在出版之前悲惨地去世。她深受怀念。Natalie Pearson和Georgina Kyriacou编辑了该报告。这项研究得到了经济和社会研究委员会通过基于地点的气候行动网络(PCAN)(授予号ES/S008381/1)和LSE紧急基金的支持。
利用宽带隙SiC光电导半导体制备的射频/微波定向能量源由于其高功率输出和多参数可调的独特优势而受到广泛关注。过去几年中,受益于激光技术的持续创新和材料技术的重大进步,利用光电导半导体器件已经在P和L微波波段实现了兆瓦级输出功率、频率灵活的电脉冲。本文主要总结和评述了近年来基于SiC光电导半导体器件在线性调制模式下产生高功率光子微波的最新进展,包括所提出的高功率光子微波源的机理、系统架构、关键技术和实验演示,并讨论了未来利用宽带隙光电导体进行更高功率光子微波多通道功率合成发展的前景与挑战。
CRISPR/CAS9技术的应用已改变了我们针对基因组的指定区域和编辑指定区域的能力。对任何生物体的广泛适应性都导致了我们对许多生物过程的理解。许多当前的工具是为简单的植物系统设计的,例如二倍体物种,但是,农作物物种中有效的部署需要更大的编辑效率,因为这些效率通常包含多倍体基因组。在这里,我们检查了温度的作用,以了解CRISPR/CAS9编辑是否可以提高小麦的效率。最近发现,较高温度下的植物生长可能会增加突变率,该CAS9用小麦的两个不同启动子表达的CAS9进行了测试。增加组织培养或种子发芽和早期生长阶段的温度会增加小麦突变的频率,而Cas9酶是由Zmubi启动子驱动的,而不是Osactin驱动的。相比之下,由奥司蛋白启动子驱动的CAS9表达不会增加在转化线或转化过程本身中检测到的突变。这些结果表明,在多倍体谷物物种中,CRISPR/CAS9编辑效率可以显着提高,其生长条件的简单变化可以促进突变增加,从而创造了纯合子或无效的敲除。