摘要:基于应变的带结构工程是一种强大的工具,可以调整半导体纳米结构的光学和电子特性。我们表明,我们可以调整INGAAS半导体量子井的带结构,并通过将其整合到卷起的异质结构中并改变其几何形成,从而改变发光的光线。来自光致发光和光致发光激发光谱的实验结果表明,由于重孔在卷起的Ingaas量子井中的轻孔状态与轻孔的反转,价带状态的强型能量转移与结构相比具有强大的能量转移。带状态的反转和混合会导致滚动量子井的光学选择规则发生强烈的变化,这些量子井也显示出传导带中消失的自旋极化,即使在近乎谐振的激发条件下也是如此。的频带结构计算以了解电子过渡的变化,并预测给定几何构造的发射和吸收光谱。实验与理论之间的比较表明了一个极好的一致性。这些观察到的基本属性的深刻变化可以作为开发量子信息技术新颖的光学设备的战略途径。关键字:频带结构反演,半导体量子井,光学选择规则,滚动微管,拉伸和压缩混合状态,弯曲的半导体膜■简介
硅环谐振器调制器(RRMS)具有减少足迹和功耗并增加波长多路复用(WDM)发射器的调制速度的巨大潜力。但是,RRM的光学特性对制造变化高度敏感,这使它们在设计量生产或大量WDM通道方面具有挑战性。在这项工作中,我们提供了一种RRM设计,该设计经过专门设计和实验验证,以降低对制造变化的敏感性。这包括对抗性过度和不足的暴露(±30 nm横向偏差)的敏感性分析以及耦合部分内蚀刻深度变化(±10 nm深度变化)的敏感性分析。对于我们的设计,偏离目标耦合强度的偏差将两倍提高。使用标准的CMOS兼容过程在Soi晶圆上制造了提议的设备。我们演示了以上灭绝比以上的RRM,OMA更好,即-7 dB(2 V pp)和29 GHz的电光带宽,仅在32 GB/s下显示仅受我们的测量设置的开放式眼睛图。测得的耦合系数与模拟值非常吻合。此外,我们应用了相同的设计修改来实现低掺杂的RRM和基于环的添加 - 滴滴 - 磁材(OADMS)。模拟和测量的耦合系数之间的一致性(我们确定为设备性能可变性的主要来源),进一步证实了我们的设计修改的有效性。这些结果表明,可以利用所提出的设计,以大规模地,尤其是在WDM系统中的大规模制造基于谐振的设备。
摘要。分形天线已经并将继续受到未来无线通信的关注。这是因为它们具有宽频和多频带功能、分形几何结构驱动多个谐振的机会,以及能够制造更小更轻、元件更少、辐射元件增益更高的天线。由石墨烯制成的小尺寸(即微米和纳米级)和超高频(太赫兹或 THz 范围)分形天线有可能以前所未有的数据速率(即每秒约 10 12 比特)增强无线通信。分形石墨烯天线是一种用于 THz 频谱无线电通信的高频可调天线,可实现无线纳米网络等独特应用。这是因为(单层)石墨烯是碳的一个原子厚的二维同素异形体,具有已知的最高电导率,目前任何其他材料(包括金和银等金属)都无法提供这种电导率。因此,将石墨烯的特性与微米和纳米级分形的自近似特性相结合,有可能彻底改变通信,至少在近场(几米的数量级)低功耗系统。在本文中,我们考虑了与这种颠覆性新技术的开发相关的基本物理和一些主要数学模型,以便为那些从事当前和未来研究的人提供指导,分形石墨烯天线就是用于高要求应用的先进材料的一个例子。这包括一些由石墨烯组成的分形贴片天线产生的 THz 场模式的示例模拟,根据“Drude”模型,其电导率与频率的倒数成比例。还探索了使用石墨烯生成 THz 源的方法,该方法基于红外激光泵浦以感应 THz 光电流。
在早期发作神经退行性患者中检测到的泛素C末端水解酶L1(UCHL1)的突变体UCHL1 R178Q显示出比野生型UCHL1(UCHL1 WT)更高的催化活性。位于活动地点袋中,精氨酸是相互作用网络的一部分,该网络将催化组氨酸保持在不活动的排列中。然而,尚不清楚glutamine取代时酶促激活的结构基础和机制。我们将X射线晶体学,蛋白质核磁共振(NMR)分析,酶动力学,共价抑制分析和生物物理测量结果结合在一起,以描述突变体中的激活因子。虽然UCHL1 R178Q的晶体结构显示出催化残基和活性位点的相同排列,但该突变在化学环境中引起了广泛的变化和30多个残基的动态,有些是距突变部位的15 a远。在HSQC光谱中的主链酰胺谐振的显着拓宽表明,几种残基的主链动力学变化与溶液小角度X-射线散射(SAXS)分析一致,这表明蛋白质动力的总体增加。酶动力学表明,尽管底物的底物略有弱,但激活是由于k猫的效应所致。与此相一致,与野生型酶相比,突变体与底物衍生的不抑制剂UB-VME的反应中显示了更高的二阶速率常数(K INACT /K I),与野生型酶相比,这是一种观察到的,表明在突变剂中具有更复发性的催化性催化性。2024 Elsevier Ltd.保留所有权利。一起,观察结果强调了结构可塑性是促进酶动力学行为的因素,可以通过突变效应调节。
锂离子电池(LIBS)由于其轻巧,能量致密和可充电性能而彻底改变了社会。由于能源消耗的增加和扩大绿色能源在更可持续的未来的愿望,市场上对Libs的需求很高。使用LIB的使用需要某些安全风险,其中电池有时可以进入称为热失控(TR)的状态。该状态会引起暴力和难以脱落的火灾。如果它发生在电池组中,则在一个单元中TR会迅速扩散到周围的细胞,对其附近的人们施加了更大的安全风险。可以使用TR的风险并停止在电池组中扩散,可以利用主动或被动冷却系统。需要考虑重量,音量和物体价格时,通常会使用被动系统。在这项研究中,已经为被动冷却系统制造了高温电导率(TC)复合材料,目的是减轻LIB包装中的TR。制造过程已有多种多样,以研究其对复合材料的影响。复合材料本身由热固性矩阵(IN2输注环氧树脂)和六角形氮化硼(H-BN)颗粒的增强。用75 wt%H-BN的固体加载制造高的TC复合材料,混合在谐振的声学混合器中,压在液压压力机中,然后在室内空气中固化过夜。密度为1.81 g/cm 3,TC在6.1-6.9 w/mk之间。材料是电绝缘的,具有高机械强度。进行了过度充电测试。一个原型专为七个Libs设计,并成功地制造了。可以得出结论,冷却效果太低,原型很可能无法在几个LIB包装的实际情况下减轻TR。但是,该测试证实了该复合材料可以承受300°C的温度。基于注射器的3D打印机用于打印复合材料,在实现的无效内部方面取得了令人鼓舞的结果。由于可以实现的潜在材料节省和制造改进,因此需要在该领域进行更多的工作。
摘要:眼动界面是一种新兴技术,用户只需注视图形用户界面 (GUI) 即可控制它们。然而,使用凝视控制的 GUI 可能是一项艰巨的任务,会导致认知和身体负荷过重以及疲劳。为了应对这些挑战,我们提出了基于生物反馈的自适应人机辅助人机界面 (HA-HCI) 的概念和模型。该模型可以有效和可持续地使用由生理信号(例如凝视数据)控制的计算机 GUI。所提出的模型允许基于阻尼谐振子 (DHO) 模型在人机交互过程中进行分析性人类表现监测和评估。为了测试该模型的有效性,作者从 12 名玩凝视控制计算机游戏的健康志愿者那里获取了凝视跟踪数据,并使用奇偶统计分析对其进行了分析。实验结果表明,所提出的模型有效地描述和解释了注视跟踪性能动态,包括 GUI 控制任务性能的主体变化、长期疲劳和训练效果,以及基于注视跟踪的控制任务期间用户性能的短期恢复。我们还分析了现有的 HCI 和人类性能模型,并开发了现有生理模型的扩展,以开发自适应用户性能感知界面。所提出的 HA-HCI 模型从用户性能的角度描述了人与生理计算系统 (PCS) 之间的交互,结合了与 PCS 的标准 UI 组件交互的性能评估程序,并描述了系统应如何应对生产力 (性能) 的损失。我们通过设计眼控游戏进一步证明了 HA-HCI 模型的适用性。我们还开发了一个基于阻尼谐振的分析用户性能模型,该模型适用于描述基于注视跟踪的 PC 游戏性能的变化。使用奇偶分析测试了该模型的有效性,结果显示存在很强的正相关性。阻尼振荡模型建立的用户个人特征可用于根据玩家的游戏技能和能力对玩家进行分类。实验结果表明,玩家可以分为学习者(阻尼因子为负)和疲劳者(阻尼因子为正)。我们发现振幅和阻尼因子之间存在很强的正相关性,这表明良好的启动者通常疲劳率较高,而启动缓慢的疲劳率较低,甚至可能在比赛中提高其表现。提出的 HA-HCI 模型和分析用户性能模型为开发自适应的人性化 HCI 提供了一个框架,该框架能够监控、分析和提高使用基于生理计算的用户界面的用户的性能。所提出的模型在提高未来人类辅助凝视控制界面系统的可用性方面具有潜在的应用。