摘要。可再生能源 (RES) 越来越受欢迎,因为全世界都希望使用清洁能源,而且很容易获得。可再生能源方法现在很容易添加到电力系统中,因此它们既可用于小型配电系统,也可用于大型电网。这种 RES 集成不利于电力质量、系统稳定性和网络安全性。谐波是由非线性且与电网相连的设备产生的。电源中的谐波是基频的倍数,这些谐波频率会导致电压和电流混乱。电压和电流的变化会损害电力系统并导致电能质量问题。因此,估算谐波是确保电力系统网络正常运行的一个非常重要的部分。谐波损耗评估正成为可再生能源系统业务的一个更大问题,因为它会影响系统运行成本及其部件的使用寿命。在偏远地区,人们对使用多种可再生能源(如太阳能和风能)的混合应用非常感兴趣。在这项研究中,我们建立了一个使用可再生能源的微电网模型。目标是通过使用不对称多级逆变器创建一个混合风能/太阳能微电网模型,这是一种新的做法。目标是使用最大功率点跟踪技术 (MPPT) 设计一个带有升压转换器的太阳能光伏、风能和电池源,以从可再生能源中获取最多的能量,并测试系统在谐波方面的性能。我们使用一种称为“最近电平控制”的方法,并将结果与已经完成的改进谐波减少的评论进行比较。本文列出了各种存储方法在微电网中使用时面临的挑战。本文提出的想法对开发适用于微电网的低成本、高效率、长寿命的储能技术模型有着重大贡献。
摘要:本文介绍了一种采用40nm CMOS工艺的E波段四倍频器。该电路采用两个推推式倍频器和两个单级中和放大器。倍频器采用伪差分B类偏置共源共栅拓扑结构,提高了反向隔离度和转换增益。采用中和技术可同时提高放大器的稳定性和功率增益。堆叠变压器用于单端到差分转换以及输出带通滤波。输出带通滤波器可提高四次谐波的输出功率,同时抑制不需要的谐波,特别是二次谐波。核心芯片尺寸为0.23mm2,功耗为34mW。测得的四次谐波在76GHz时实现了1.7dBm的最大输出功率,峰值转换增益为3.4dB。对于 74 至 82 GHz 的频谱,基波和二次谐波抑制分别超过 45 dB 和 20 dB。
平衡市场(MB)。不同类型的辅助服务用于确保电网的安全性和稳定性,允许参与 MSD 和 MB 的发电机组总量形成备用(即可用的系统灵活性)。辅助服务可根据必须交付的时间进行分类:[2] 电能质量和调节(毫秒 - 5 分钟);旋转备用、应急备用、黑启动(5 分钟 - 1 小时);负荷跟踪、负荷平衡/调峰/填谷、预防输电削减、减少输电损耗、机组组合(1 小时 - 3 天);或按其调节功能列出:[3] 惯性响应、有功功率爬坡率控制、频率响应、电压调节、故障贡献和谐波抑制。
本文介绍的混频器可以在国际电信联盟分配给 5G 的第一个毫米波频段(24.25 至 27.5 GHz)中产生射频信号。图 3 显示了转换增益 CG 与 LO 频率的关系,范围从 26.25 到 29.5 GHz。CG 为正值,高于 2 dB。此外,为了验证 IF、LO 和 USB 频率下的谐波抑制,图 4 显示了其输出功率谱。在 LO 频率带宽内,混频器具有良好的抑制水平。对于 28.25 GHz 的 LO 频率,USB 信号的抑制最大,约为 25 dB。并且在 LO 带宽内,IF 信号的抑制超过 30 dB。在 27.4 GHz-LO 频率下,LO 抑制在混频器输出端达到最大值 15 dB,对于其他频率,LO 抑制降低,最坏情况下高于 4 dB。
本文将基于 PSO 的 PI 控制应用于 APF 拓扑的系统切换功能。使用粒子群优化 (PSO) 方法对有源电力滤波器 (APF) 的比例和积分 (PI) 增益进行调整,以进行无功功率补偿和谐波抑制。传统的 PI 控制器需要更多的计算时间并且精度较低。使用瞬时有功和无功功率方案提取谐波负载电流。将使用 PSO 训练的 PI 控制器与传统 PI 控制器的性能指标(包括总谐波失真、无功功率、功率因数和电容器电压调节)进行了比较。PSO 具有快速收敛、最少的调整参数和快速执行来解决非线性问题的特点。传统的 PI 控制器被在线 PSO 训练的 PI 控制器所取代,目的是在非线性负载条件下增强 APF 中的直流电压跟踪。所提出的工作是在 sim-power system 工具箱中开发的,该工具箱是 Matlab/Simulink 中的一个软件包。
摘要 — 本文介绍了一种毫米波多模式雷达发射机 IC 的架构,该架构支持三种主要雷达波形:1) 连续波 (CW/FMCW);2) 脉冲;3) 相位调制连续波 (PMCW),全部来自单个前端。该 IC 采用 45 纳米 CMOS 绝缘硅片 (SOI) 工艺实现,可在 60 GHz 频段运行,集成了宽带三倍频器、两级前置放大器、两个功率混频器和混合信号基带波形生成电路。通过配置功率混频器和相关波形基带电路,可实现多种模式下的发射机雷达运行。这种方法的一个重要优势是,总信号带宽(雷达的一个关键性能指标)仅受脉冲生成中 RF 输出节点的限制。还提出了一种基于电流复用拓扑的新型宽带三倍频器设计技术,用于 LO 生成,输出分数带宽 > 59%。 CW 模式下完整 TX IC 的晶圆上测量结果显示,54 至 67 GHz 的平均输出功率为 12.8 dBm,峰值功率为 14.7 dBm,谐波抑制比 > 27 dB。脉冲模式下的测量显示可编程脉冲宽度为 20 至 140 ps,相当于 > 40 GHz 的雷达信号带宽。本例还演示了 PMCW 模式操作,使用 10 Gb/s PRBS 调制雷达信号。该 IC 功耗为 0.51 W,占用 2.3 × 0.85 mm2 的芯片面积(不包括焊盘)。