摘要神经肽PACAP充当共同传播器,增加了神经元的兴奋性,这可能会增强与多种感觉方式传达的威胁相关的焦虑和唤醒。在整个小鼠神经系统中表达PACAP及其受体PAC1的分布在以谷氨酸能和Gabaergic神经元标记的表达状态下确定,以开发出在感官输入中脑运动反应中PACAP在脑运动反应中的相干化学植物学图片。通过观察野生型和PACAP敲除小鼠嗅觉威胁提示后,通过观察脑神经元的FOS激活来测试PACAP的电路角色。神经元激活和行为反应在PACAP敲除小鼠中被钝化,并伴随着表达PACAP及其受体的GABA能和谷氨酸能神经元中的囊泡转运蛋白表达急剧下调。本报告对神经肽信号传导在功能相干性多突触电路中的神经系统中支持兴奋性和抑制性神经传递在支持兴奋性和抑制性神经传递中的作用有了新的看法。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
摘要癌细胞对谷氨酰胺的依赖性可能会被用作治疗方法,以作为治疗缺乏药物驱动基因的癌症的新策略。在这里,我们发现人肝癌取决于细胞外谷氨酰胺。然而,使用谷氨酰胺酶CB-839作为单药治疗靶向谷氨酰胺成瘾的抗癌作用非常有限,即使是针对最大的谷氨酰胺上瘾的人肝癌细胞。使用化学文库,我们确定了V-9302是一种新型的谷氨酰胺转运蛋白ASCT2的抑制剂,将其依赖性谷氨酰胺依赖性(GD)细胞对CB-839治疗敏感。从机械上讲,CB-839和V-9302耗尽的谷胱甘肽和诱导的活性氧(ROS)的组合,导致GD细胞凋亡。此外,这种组合还显示了体内HCC异种移植小鼠模型的肿瘤抑制作用。我们的发现表明,通过靶向谷氨酰胺酶和谷氨酰胺转运蛋白ASCT2对谷氨酰胺代谢的双重抑制代表了谷氨酰胺上瘾的肝癌的潜在新型治疗策略。
22q11.2 deletion syndrome (22q11.2DS), also referred to as velo- cardiofacial or DiGeorge syndrome, is a genetic disorder caused by a microdeletion on the long arm of chromosome 22 (Jonas et al., 2014) and is, with a prevalence of 1 in 2000–4000 births, one of the most common recurrent copy number variant disorders (Schneider et Al。,2014)。它的表型表达是高度的,包括先天性心脏病,帕拉特异常,低钙血症和畸形面部特征等医学状况(Bassett等,2011)。此外,22q11.2ds与患有精神疾病的高风险有关,包括精神病谱系障碍(Schneider等,2014),而22q11.2ds患者的大多数患者大多数具有低于平均水平的智商和低于平均水平的智商和认知功能的障碍。认知功能通常会随着年龄的增长而进一步下降,并且在22q11.2ds的患者中发现了陡峭的趋势(Vorstman等,2015)。通常被删除的区域的大小为1.5-3 Mb(兆邦),包括大约90个基因,其中大多数是表达的
乳腺癌是全球三大癌症之一,也是女性中最常见的癌症(1)。由于早期发现和治疗方面的进步,乳腺癌的预后有所改善(2)。然而,乳腺癌仍然是发达国家癌症相关死亡的第二大原因,其发病率和死亡率在亚洲、非洲和南美洲呈逐渐上升趋势(2)。全球约 20% 的乳腺癌过度表达或扩增 HER2(erb-b2 受体酪氨酸激酶 2,ERBB2)致癌基因。尽管 HER2 阳性与预后不良和对标准化疗的反应有关,但 HER2 mAb 和抑制剂的引入改善了 HER2 + 乳腺癌患者的无病生存率和总生存率(OS)(3)。然而,大多数患者
简介 肿瘤细胞的快速生长需要专门的代谢重编程。肿瘤代谢不仅促进生长,而且还会创造一种肿瘤微环境 (TME),通过消耗关键代谢物(如色氨酸、葡萄糖和谷氨酰胺)并产生抑制性代谢物(如犬尿氨酸)来抑制免疫效应功能。或者,抑制性免疫细胞在 TME 中茁壮成长,这些细胞在代谢上与效应细胞不同 (1-3)。TME 中最突出的免疫细胞类型之一是抑制性巨噬细胞。巨噬细胞是肿瘤的主要组成部分,参与癌症的发生、发展、血管生成、转移和创造免疫抑制环境 (4-7)。此外,肿瘤相关巨噬细胞 (TAM) 表达代谢酶,如 iNOS 或精氨酸酶 1(这两种酶都会导致精氨酸耗竭)和 IDO(一种导致色氨酸耗竭的酶),可抑制 T 细胞活化和增殖 (8–11)。TAM 还表达 PDL1 和 PDL2,它们与 PD1 在
如上所述,很明显药物的吸收和与分子细胞系统的相互作用是复杂的现象,并且受到特定膜转运蛋白的功能或功能障碍的强烈影响[8–10]。因此,药物-转运蛋白相互作用预计在人类治疗中发挥关键作用[11,12],或者在其他情况下,由于所谓的脱靶相互作用而引发副作用[13]。经过几十年的研究,现在人们普遍认为,在药物设计中必须考虑膜转运蛋白,以改善药物输送和疗效。在这方面,国际转运蛋白联盟[14]成立,旨在确定:(i)必须考虑哪些转运蛋白来改善药物吸收;(ii)用于测定和筛选药物-转运蛋白相互作用的合适生物技术;(iii)需要考虑脱靶效应的转运蛋白[15,16]。实验室自动化与筛选协会 (SLAS, https://www.slas.org ) 也开始考虑膜转运蛋白在药物发现中的应用 [17]。研究转运蛋白的最新方法进步引发了对膜转运蛋白和药物-转运蛋白相互作用的研究呈指数级增长 [18–20]。在这种情况下,人们对一组特殊的膜转运蛋白产生了浓厚的兴趣:谷氨酰胺转运蛋白。人们对这组蛋白质的兴趣日益浓厚的原因有很多,从基础知识的提高到谷氨酰胺转运参与细胞生命的关键过程及其在人类病理学中的作用。最后一个方面为利用这些蛋白质作为人类治疗的新靶点开辟了新的、非常有希望的前景。在这篇评论中,将总结这一迅速发展的领域的现状。
本文探讨了神经递质多巴胺、谷氨酸和γ-氨基丁酸 (GABA) 导致精神分裂症的假设,并得出结论:谷氨酸影响多巴胺和 GABA 的联合模型是最合理的解释机制。多巴胺假说得到了证据的支持,即精神分裂症患者的特定大脑区域的多巴胺受体和神经递质明显增加和减少。此外,针对多巴胺受体的药物已成功减轻了精神分裂症症状。谷氨酸假说认为神经递质谷氨酸是这种疾病的基础,因为影响 NMDA(谷氨酸)受体已被证明会导致积极和消极的精神分裂症症状,包括仅在精神分裂症中出现的视觉和听觉症状。此外,与 NMDA 受体和精神分裂症相关的几个基因存在遗传关联。 GABA 模型也被探索,因为篡改与 GABA 相关的细胞已被证明会诱发精神分裂症症状,尽管这可以解释为与谷氨酸模型的结合,而不是对立。单独考虑时,这些假设是有缺陷的。多巴胺模型无法解释负面的精神分裂症症状,针对多巴胺受体的药物仍然无法完全减轻自我报告的症状。同样,谷氨酸模型可能是由不规则的 GABA 量引起的,谷氨酸假说也可能解释针对多巴胺的治疗的积极作用。有证据表明,导致 NMDA 受体功能下降的药物会导致多巴胺功能障碍。结合多巴胺和谷氨酸参与的有力证据,最合理的模型是 NMDA 功能障碍导致 GABA 和多巴胺受体问题。
小麦麸质蛋白是已知的乳糜泻病因。这些蛋白质中脯氨酸和谷氨酰胺残基的重复序列使其在胃肠道中具有极强的抗消化性。这些未消化的肽会引发易感个体的免疫反应,这可能是过敏反应或乳糜泻。麸质排除饮食是此类疾病的唯一获批疗法。最近,大麦中的谷氨酰胺特异性内切蛋白酶 (EP-B2) 和脑膜炎黄杆菌中的脯氨酰内切肽酶 (Fm-PEP) 的组合在小麦胚乳中表达时,在模拟胃肠道条件下被证明可以合理地解毒免疫原性麸质肽。尽管这些“麸质酶”很有用,但它们的应用受到限制,因为它们在高温下会变性,而大多数食品加工都需要高温。这些酶的变体来自嗜热生物,但由于其最佳活性在高于 37 ◦ C 的温度下存在,因此不能直接应用。不过,这些酶可以作为参考,指导中温来源的肽酶向热稳定性进化。因此,这里使用序列引导的位点饱和诱变方法在编码 Fm-PEP 和 EP-B2 的基因中引入突变。使用这种方法鉴定出能够在高达 90 ◦ C 的温度下存活的 Fm-PEP 的热稳定性变体和热稳定性高达 60 ◦ C 的 EP-B2 变体。然而,达到的热稳定性水平还不够;本研究提供了可以提高谷蛋白酶热稳定性的证据。并且这项初步研究为未来更详细的结构研究奠定了基础,以获得可以在 ∼ 100 ◦ C 温度下存活的 Fm-PEP 和 EP-B2 变体,从而可以将其包装在谷物中并将此类谷物用于食品工业。
突触连接的数量和强度会因经验和活动而发生变化,这推动了学习过程中神经回路的细化。哺乳动物大脑皮层中的大多数兴奋性突触都发生在树突棘上,树突棘是神经元树突的微观膜状突起 [ 1 , 2 ]。精确调节树突棘的生长、稳定和消除对于学习至关重要 [ 3 – 5 ]。树突棘的体积也受到动态调节,并且与 AMPA 型谷氨酸受体 (AMPAR) 的数量高度相关,后者介导快速兴奋性突触传递;因此,树突棘的大小与突触功能紧密相关 [ 6 ]。事实上,通过诱导长期增强 (LTP) 而增加的突触强度与树突棘扩大有关 [ 7 , 8 ],而通过诱导长期抑制 (LTD) 而降低的突触强度与树突棘收缩或丢失有关 [ 8 , 9 ]。树突棘发育和可塑性机制失调可导致树突棘改变
