锂离子电池(LIB)具有循环寿命长、能量密度高、稳定性好等优点,被广泛应用于便携式设备和电动汽车。[1] 然而,全球锂供应有限、成本和安全问题以及对其环境影响的担忧严重阻碍了 LIB 的大规模应用。[2] 因此,后锂离子电池如钠离子(Na + -ion)、钾离子(K + -ion)、钙离子(Ca + 2 -ion)和镁离子(Mg + 2 -ion)电池因其能量密度提高、成本降低、安全性增强、储量丰富以及对环境更加友好而备受关注。[3] 在这种情况下,Mg + 2 和 Ca + 2 等多价离子会经历单电子以上的氧化还原反应,与相应的单价电池相比,其体积能量密度更高。此外-
蓬勃发展的电动汽车 (EV) 行业对具有更高能量密度和更高安全性的二次电池的需求日益增加 [1,2]。在传统锂离子电池 (LIB) 中,石墨由于其低还原电位、优异的可逆性和高电子/离子电导率而长期被视为一种良好的负极材料 [3-5]。然而,延长电动汽车每次充电的行驶距离需要将能量密度提高到超出商用 LIB 的范围。沿着这个方向,新型负极材料和结构的开发引起了业界的广泛关注 [6-9]。特别是从电池配置的角度来看,无负极结构被认为是最合适的能量密度结构,因为不需要活性材料可以最大程度地减小电极体积。请注意,人们已经通过修改集流体或设计电解质在 LIB 中研究了无负极系统 [10-13]。在安全性方面,与传统内燃机相比,电动汽车电池组中电池串联密集排列所带来的火灾隐患更难解决。点火后,电动汽车电池组容易起火,并迅速蔓延到周围的电池组和其他配件 [14],因为相邻电池组中的电池很容易满足点火的三个条件:氧气、热量和燃料。由于将氧气和热量从电池系统中排除几乎是不可行的,因此人们的注意力自然而然地集中在商用 LIB 中的易燃电池组件上,即碳酸盐基液体电解质。这就提出了一个问题 [15]:能否在不牺牲关键电化学性能的情况下将这些电解质替换为不易燃的电解质?对解决这一问题的需求不断增长,导致了全固态电池 (ASSB) 的出现
16:25-16:45(G02-16) 通过 DFT 计算和机器学习方法设计碱金属离子电池负极材料(特邀) 陈海元,电子科技大学,中国
注:在不同的应用中, C1 、 C2 可考虑只装一个:在 3V 应用中建议用一个 1uF 或以上;在 4.5V 应用中建议用一 个 4.7uF 或以上 , 均为使用贴片电容;在 6V 应用中建议用一个大电容 220uF+100nF 贴片电容; C2 均靠近 IC 之 VDD 管脚放置且电容的负极和 IC 的 GND 端之间的连线也需尽量短。即不要电容虽然近,但布线、走 线却绕得很远(参考下图)。当应用板上有大电容在为其它芯片滤波时且离 TC118AH 较远也需按如上要求再 放置一个小电容于 TC118AH 的 VDD 脚上。图中 C4 ( 100nF )电容优先接于马达上,当马达上不方便焊此 电容时,则将其置于 PCB 上 ( 即 C3) 。
警告! 1. 不使用时,请勿将电池浸入水中并保持电池干燥; 2. 请勿敲击、投掷电池或将电池置于火中或极热的环境中; 3. 根据充电要求使用指定的电量进行充电; 4. 请勿反接正极 (+) 和负极 (-) 端子; 5. 请勿将电池投入火中或直接加热; 6. 请勿将电线或其他金属物体连接到正极 (+) 和负极 (-) 端子上造成电池短路; 7. 请勿将电池与金属物品(如项链、发夹等)一起运输或储存; 8. 请勿敲击、投掷、踩踏、弯曲等; 9. 请勿直接焊接电池端子; 10. 请勿用钉子或其他尖锐物体刺穿电池外壳。
摘要:本文利用碳纳米纤维 (CNF)/碳纳米墙 (CNW) 的优点,进行了一项新的合成方法,以改善锂离子电池负极材料的特性。在碳基纳米材料中,CNW 具有低电阻和高比表面积的特点。CNF 具有可拉伸和耐用的优势。使用微波等离子体增强化学气相沉积 (PECVD) 系统以甲烷 (CH 4 ) 和氢气 (H 2 ) 混合气体生长 CNW。将聚丙烯腈 (PAN) 和 N,N-二甲基甲酰胺 (DMF) 搅拌以制备溶液,然后使用静电纺丝法制备纳米纤维。然后使用热板在空气中进行热处理以稳定化。此外,使用快速热退火 (RTA) 在 800 ◦C 下进行 2 小时的热处理以生产 CNF。使用场发射扫描电子显微镜 (FE-SEM) 确认 CNFs/CNWs 负极材料的表面和横截面图像。使用拉曼光谱检查结构特征和缺陷。进行循环伏安法 (CV)、电化学阻抗谱 (EIS) 和恒流充电/放电测试以分析电气特性。合成的 CNFs/CNWs 负极材料具有易于进行氧化和还原反应的 CV 值,并确认了 93 Ω 的低 Rct 值。
锂离子电池由于其高能量密度、优异的循环寿命和实惠的价格,已被广泛应用于消费产品和电动汽车。 [1,2] 然而,尽管锂离子电池中使用传统的石墨负极在循环过程中具有出色的稳定性,但由于其固有的低理论容量(372 mAh g 1 ),其循环容量受到限制。 因此,最近的研究主要集中在开发锂离子电池的高容量电极上,以满足当前消费者的需求。 因此,已经提出了许多新型负极材料来实现更好的循环性能。 特别是,过渡金属氧化物(例如Ni,Co,Fe等)作为用于锂离子电池的高容量负极而受到了广泛的关注,[3] 其中NiO因其高的理论容量(718 mAh g 1 )、可及性和价格实惠而受到特别的关注。然而,过渡金属氧化物仍有许多需要克服的限制,例如电子电导率低、初始库仑效率差、充电/放电过程中体积变化大,所有这些最终都会导致循环不稳定和能量密度损失。为了克服这些问题,可以使用多孔或纳米级过渡金属氧化物活性材料作为 LIB 阳极,以提供更大的表面积、充电/放电过程中的更低体积变化和更短的扩散路径。[4,5] 到目前为止,已经使用多种方法合成多孔纳米材料,包括气相沉积、[6] 脱合金、[7] 3D 打印、[8]
目录 页码 执行摘要 4 关于作者 5 简介 5 • 本评论的重点 • 固态 / 半固态锂离子电池组件 • 当今的固态 / 半固态锂离子电池市场 • (预计)市场发布 – 固态 / 半固态锂离子电池电动汽车 基于人工智能的商业相关专利识别 12 • 自 2019 年以来的商业相关专利系列 / 实用新型数量 技术决策树 30 • 固体电解质 – 类型 – 已推出或即将推出市场 • 固体电解质 – 类型 – 根据专利申请 • 固体电解质 – 概念 • 固体电解质 – 不含磷的氧化物 – (可能)结晶 • 固体电解质 – 磷酸盐 / 含 P 的氧化物 – (可能)结晶 • 固体电解质 – 氧化物 / 磷酸盐 – (可能)玻璃 • 固体电解质 – 氢氧化物 • 固体电解质 –硫化物•固体电解质 – 减缓硫化氢排放•固体电解质 – 聚合物•固体电解质 – 卤化物 / 氧卤化物•薄膜电池用固体电解质•固体电解质 – 硼烷•锂(钠)盐•增塑剂•液体电解质组分 / 液体添加剂•固体电解质添加剂 / 不含锂的支撑和填充材料•固体电解质粘合剂•负极活性材料•正极活性材料•负极添加剂•正极添加剂•负极粘合剂•正极粘合剂
新兴便携式电子设备、交通运输(如电动汽车、混合动力汽车、自动驾驶飞机等)和智能电网规模储能的快速发展刺激了对高能量密度、高安全性和低成本储能系统的需求不断增长。[1–4] 尽管如此,锂离子电池(LIBs)的持续大规模应用受到其成本飙升的制约,考虑到锂资源的短缺和分布不均,这往往还与不良的环境和人权记录有关,促使传统的 LIBs 被新的电池系统所取代。[5–7] 在众多负极材料中,钠(Na)金属被认为是下一代可充电电池的有前途的负极,因为它具有高的理论比容量(1165 mAh g-1)、低氧化还原电位(-2.714 V 相对于标准氢