锂离子电池 (LIBs) 具有高能量密度和长寿命的特点,在便携式电子设备和电动汽车方面取得了显著成功 [1-4]。然而,由于有机电解液、锂储量不足和成本高等问题,LIBs 的进一步应用受到限制 [5-7]。因此,有必要开发替代性二次电池来取代 LIBs [8,9]。水系锌金属电池 (AZMBs) 已成为有竞争力的候选电池,因为锌 (Zn) 金属负极具有优异的理论容量 (820 mAh g −1 和 5855 mAh cm −3) 和低电化学电位 (−0.76 V vs. 标准氢电极)、丰富的锌资源,以及水系电解质固有的安全性和高离子电导率 (~ 1 S cm −1 vs. 1-10 mS cm −1 有机电解质) [10-16]。然而,锌金属负极存在析氢反应(HER)、腐蚀、钝化、枝晶生长等严重问题,导致可逆性差、循环寿命不稳定,甚至发生短路故障[17–23]。这些问题严重阻碍了AZMBs的实际应用。为了克服上述问题,人们提出了各种针对锌金属负极的稳定策略,包括表面改性、结构优化、电解质工程和隔膜设计[24–31]。然而,由于使用了远远过量的锌,这些研究尚未实现较高的锌利用率[32]。为了补偿Zn的不可逆损失,提高充放电过程的循环稳定性,研究人员通常构建Zn过量(Zn箔厚度≥100μm)、面积容量低(1-5mAh cm−2)的锌金属负极,导致负极与正极的容量比高(N/P>50),放电深度(DOD)较低(<10%)[33]。放电深度(DOD)是参与电极反应的容量占锌金属负极总容量的百分比:
磷酸铁锂 (LiFePO4) 电池由发电电化学电池组成,为电气设备供电。LiFePO4 电池由阳极、阴极、隔膜、电解质以及正极和负极集电器组成。阳极端子充当锂离子源。电解质通过隔膜将带正电的锂离子从阳极输送到阴极,反之亦然。锂离子的运动在阳极中产生自由电子,因此,电子将通过外部电路流到阴极,即正极,因此,当电负载连接到电池上时,电流将从正极流到负极。电池由同心交替的负极和正极材料层组成,隔膜层位于其间。然后将电解质注入电池中以允许离子传导。
开发锂氧 (Li-O 2 ) 电池对于实现储能装置的高能量密度至关重要。由于正极试剂氧气重量轻,基于 Li 2 O 2 的形成,锂氧电池具有 3500 Wh kg -1 的高理论能量密度。然而,它们面临着来自金属负极、空气电极和不稳定电解质的若干挑战。虽然大多数研究都集中在空气电极上,但负极保护的重要性也不容忽视。在本综述中,我们旨在了解锂氧电池中锂负极面临的挑战,包括锂枝晶的生长、锂与电解质中活性物质之间的寄生反应以及氧气交叉效应。此外,还将介绍锂氧电池中锂保护的最新进展。本综述强调了负极保护的重要性,尤其是在富氧环境中,并可为未来锂氧电池的发展提供指导。
是的。串联连接可让您使用两台 12V Safari UT 1300 组成 24V 系统。如果将三台串联在一起,将组成 36V 系统,四台串联在一起将组成 48V 系统。串联连接方法是将粗规格电线(4 号或更粗)从一个负极柱 (-) 连接到下一个电池的正极柱 (+),然后对每个电池重复此操作,从负极到正极,这样每个电池都连接到下一个电池。同样,如果您想增加 Ah,那么您可以将两个电池的正极柱连接到正极柱,负极柱连接到负极柱,从而将电池并联。这将使单个 105Ah UT 1300 变成 210Ah 系统。您可以通过这种方式将两个以上的电池连接在一起,将 Ah 增加到 210(2 块电池)到 315(3 块电池)到 420(4 块电池)。请参阅 www.lionenergy.com 上的在线 Safari UT 1300 用户手册中的图表。
KORA天文学,空间和空间空间。 776大韩民国3 SNU天文学研究中心,首尔1号,格温纳卡(Gwinakan)08826,韩国:679-5313,日本714-1411,日本
KORA天文学,空间和空间空间。 776 100,首尔08826,首尔08826韩国4。天文台,157-1 NSSIN,北海道096-0066,日本,
大量研究证实,LIC兼具锂离子电池和超级电容器的储能机制优势,被认为是最有前途的储能装置之一。6,7 LIC的储能过程包括电容性正极的离子吸收/解吸和电池性负极的Li +嵌入/脱嵌过程。两种电极工作电压范围的差异有效拓展了LIC的电位窗口,有利于提高能量密度。8 – 10然而,LIC电容性正极和电池性负极之间的动力学不平衡导致其在大电流充放电下性能显著下降。11,12因此,开发具有快速Li +的电池性负极材料十分必要。
含锂劣化物 抑制负极表面劣化物的形成 · 适当的负极表面处理以防止劣化 · 防止电池材料中所含水分进入电池的设计和生产技术 · 采用确保电池均匀冷却的结构 · 构建防止对整个电池施加负荷的控制系统
1 中南林业科技大学,长沙 410083,中国 2 中南大学,长沙 410083,中国 * 电子邮件:2318214796@qq.com 收稿日期:2022 年 5 月 19 日 / 接受日期:2022 年 6 月 21 日 / 发表日期:2022 年 8 月 7 日 锌离子电池因其安全性高、成本低、理论容量高、环境友好等特点,已经成为现代储能装置的重要来源,但仍存在一些问题阻碍着电池的发展。负极主要存在三个问题:锌枝晶、锌负极腐蚀、锌负极钝化。其中,锌枝晶主要是由于锌在负极表面沉积不均匀造成的,会严重影响电池的循环稳定性和可逆性,降低库仑效率。如果枝晶生长穿透隔膜,还可能造成短路,使电池失效。本文总结了近三年解决锌枝晶问题的方法,包括阳极结构的改性、阳极表面的改性、电解液的改性等。关键词:新能源,锌离子电池,枝晶,电化学1.引言
中国生产了所有锂离子电池的四分之三,拥有 70% 的正极产能和 85% 的负极产能(两者都是电池的关键部件)。超过一半的锂、钴和石墨加工和精炼产能位于中国。欧洲占全球电动汽车组装总量的四分之一以上,但除了 20% 的钴加工外,欧洲几乎没有其他供应链组成部分。美国在全球电动汽车电池供应链中的作用更小,仅占电动汽车产量的 10% 和电池产能的 7%。韩国和日本在原材料加工下游的供应链中占有相当大的份额,特别是在技术含量高的正极和负极材料生产方面。韩国占全球正极材料产能的 15%,而日本占正极材料产能的 14% 和负极材料产能的 11%。韩国和日本公司还参与生产其他电池部件,如隔膜。