摘要:我们研究了在马尔可夫和非马尔可夫状态下,量子比特与微观碰撞模型建模的环境接触时产生的不可逆熵。我们的主要目标是为非马尔可夫动力学与负熵产生率之间关系的讨论做出贡献。我们采用了两种不同类型的碰撞模型,它们可以或不保留系统与进入的环境粒子之间建立的相关性,而它们都通过从环境到系统的信息回流而具有非马尔可夫性质。我们观察到,前一种模型(其中系统与环境之间的相关性得以保留)在瞬态动力学中产生负熵产生率,而后一种模型始终保持正熵产生率,即使与相应的马尔可夫动力学相比,收敛到稳态值的速度较慢。我们的结果表明,负熵产生率背后的机制不仅仅是通过信息回流的非马尔可夫性,而是通过已建立的系统-环境相关性对其的贡献。
我们修改了 R´enyi (1961) 熵公理,使其适用于负(“带符号”)测度,例如,在量子力学的相空间表示中。我们获得了有关系统的两个新信息(缺乏)测度,我们分别将其作为经典香农熵和经典 R´enyi 熵的带符号类似物。我们表明,带符号的 R´enyi 熵见证了系统的非经典性。具体而言,当且仅当带符号的 R´enyi α -熵对某个 α > 1 为负时,测度才具有至少一个负分量。相应的非经典性测试不适用于带符号的香农熵。接下来,我们表明,当 α 为偶数正整数时,带符号的 R´enyi α -熵是 Schur 凹的。(一个例子表明带符号的香农熵不是 Schur 凹的。)然后,我们为带符号测度建立了一个抽象的量子 H 定理。我们证明,在有符号测度的经典(“去相干”)演化下,参数化的有符号 R'enyi 熵家族的成员不减少,其中后者可以是 Wigner 函数或量子系统的其他相空间表示。(示例显示有符号 Shannon 熵可能是非单调的。)我们最终得出一个结论,即从有符号概率开始的相空间演化在有限的时间长度后何时变为经典。
本专著使用克劳德·香农 (Claude Shannon) 等人开发的信息理论来分析会计。在以下两种情况下可以推导出三向框架等价性:(i) 当状态可观测时;(ii) 当状态不可观测且只有信号可观测时,信号报告的状态有误。该等价性建立了会计数字、公司回报率和公司可用信息量的相等性,其中香农熵是信息度量。推导状态可观测等价性的主要假设是恒定的相对风险规避偏好、无套利价格和几何平均会计估值。状态不可观测性使用量子公理建模,因此使用量子概率;状态不可观测的方式与量子对象不可观测的方式相同。状态可观测等价性被视为状态不可观测等价性的特例。
1 在一些较早的文献中,偏序被写成相反的形式,即“不细化”,因此顶部和底部以及连接和相遇互换([1];[2])。 2 在范畴论中,子集的概念推广到子对象或“部分”的概念,“部分”的对偶概念(通过反转箭头获得)是划分的概念。” [5,第 85 页]
信息理论已成为一种越来越重要的研究领域,以更好地了解Quantum力学。值得注意的是,它涵盖了基础和应用观点,还提供了一种共同的技术语言来研究各种研究领域。非常明显,关键信息理论数量之一是由相对熵给出的,这量化了分开两个概率分布,甚至两个量子状态的困难。这样的数量依赖于诸如计量,量子热力学,量子通信和量子信息等领域的核心。鉴于应用的广泛性,希望了解该数量在量子过程中如何变化。通过考虑一般的统一通道,我们在输出和输入之间的广义相对熵(r´enyi和tsallis)上建立了一个结合。作为我们边界的应用,我们根据相对熵得出了一个量子速度限制的家族。讨论了这个家族与热力学,量子相干,不对称和单光信息理论之间的可能联系。
对于任何状态 ρ 和 σ (其中后者不需要归一化)。相对熵是一个比冯·诺依曼熵更一般的熵量。它包含后者和其他信息测度,如互信息,作为特例。它可以看作是量子态之间的相异性度量,并用于定义各种重要量,如纠缠的相对熵 [6]。相对熵表征非对称假设检验的误差指数 [7] 或量化资源理论中的资源量 [8,9]。到目前为止,还没有证明量子相对熵的链式法则。这与经典情况形成了鲜明的对比,在经典情况下,相对熵(也称为 Kullback-Leibler 散度)存在链式法则 [10,定理 2.5.3]。对于一对离散随机变量 ( X, Y ),其字母为 X × Y ,我们有
首先,回想一下参考文献。[ 24 ] 其中 Hughston、Josza 和 Wootters 给出了给定密度矩阵背后所有可能集合的构造性特征,假设集合具有有限数量的元素。其次,Wiseman 和 Vaccaro 在参考文献中。[ 25 ] 然后通过物理可实现集合的动态激励标准论证了首选集合。第三,Goldstein、Lebowitz、Tumulka 和 Zanghi 挑选出高斯调整投影 (GAP) 测度作为热力学和统计力学环境中密度矩阵背后的首选集合 [ 26 ]。第四,Brody 和 Hughston 在几何量子力学中使用了最大熵的一种形式 [27]。HJW 定理。在技术层面上,对于我们的目的而言,最重要的结果之一是 Hughston-Josza-Wootters (HJW) 定理,该定理已在文献 [ 24 ] 中证明,现在我们对其进行总结。考虑一个有限维希尔伯特空间 H S 的系统,该系统由秩为 r 的密度矩阵 ρ 描述:ρ = P r j =1 λ j | λ j ⟩⟨ λ j | 。我们假设 dim H S := d S = r ,因为 d S > r 的情况很容易通过将 H S 限制在由 ρ 的图像定义的 r 维子空间中来处理。然后,可以通过与具有 d S 个正交向量作为列的 d × d S 矩阵 M 进行线性混合,从 L ( ρ ) 生成具有 d ≥ d S 个元素的通用集合 e ρ ∈E ( ρ )。然后,e ρ = { p k , | ψ k ⟩} 由以下公式给出:
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 未经三井物产全球战略研究所 (MGSSI) 事先同意,禁止全部或部分使用、复制、复印或重新分发本报告。 本报告基于从可靠来源获得的信息和数据编写;但是,MGSSI 不保证此类信息或数据的准确性、可靠性或完整性。 本报告中的观点代表作者的观点,不能以任何方式被视为代表 MGSSI 和三井物产集团的统一意见。 MGSSI 和三井物产集团对因使用本报告而可能造成的任何直接或间接损害或损失概不负责。 本报告中的信息如有变更,恕不另行通知。