根本性设计变革半导体通常是通过深度扩散工艺制成的,该工艺将掺杂剂(元素杂质)引入硅晶片的晶格中。掺杂剂将晶片转变为能够有效导电的器件。掺杂剂类型决定了每个半导体区域的导电特性:N 型掺杂剂(如磷)产生负电荷载流子区域,而 P 型掺杂剂(如硼)产生正电荷载流子区域。DSRD 还包含轻掺杂的本征区域。这个高温区域夹在 N 型半导体和 P 型半导体之间,半导体中的电传导主要由价带和导带之间的激发电子决定。控制掺杂剂的分布和每个半导体层的厚度对于确保最终器件的最佳性能至关重要。然而,多年来用于生产第一代 DSRD 的扩散工艺繁琐、耗时且成本高昂,使得很难根据需求调整制造时间表。 “掺杂剂扩散是一种标准的半导体制造工艺,但就 DSRD 而言,该工艺既无法得到很好的控制,也无法大规模生产,”MED 工程师、外延 DSRD 团队成员 Sara Harrison 说道。掺杂剂深入硅中所需的扩散过程可能长达一周以上,整个过程
使用超支化聚酰胺胺作为添加剂,通过非溶剂诱导相转化制备了具有改进的防污和抗生物污染性能的聚氯乙烯 (PVC) 超滤膜。PVC 通过亲核取代反应与商用聚酰胺胺纳米材料 Helux-3316 反应到铸造溶液中。通过 ATR-FTIR 和元素组成研究了纯膜和功能化膜的组成。使用荧光染料荧光胺跟踪氨基。使用表面 ζ 电位和水接触角来测量测试膜的表面电荷和亲水性。氨基的加入增加了膜的亲水性和表面孔隙率,从而提高了渗透性。功能化膜在过滤 BSA 溶液时表现出防污性能,并且比 PVC 膜的不可逆污染更低。 Helux 部分附着在 PVC 上可产生具有抗生物污染功能的膜,这可以通过带正电荷的 Helux 部分与带负电荷的细胞膜相互作用来解释。过滤过程中附着在膜表面的细胞生长减少量达到革兰氏阳性菌金黄色葡萄球菌的 1-log。该研究表明,在铸造溶液中加入浓度为 1 wt% 的超支化纳米材料可显著提高膜的性能,包括渗透性和防污潜力。
Hz范围[1-3]。这些可以保持极小,并以空间分辨率向下降至原子大小[4-7]。此传感器技术还可以非常准确地与低能和空间需求相结合[8]。NV中心也可以用于测量温度[9-12],电场[13],并且在量子计算的字段中也有应用[14,15]。使用NV中心的其他磁传感协议包括使用NV基态以自旋混合[16-18]或测量红外线的旋转混合的全光方法,并具有接近Shot-Noise Noise Limited敏感性[19]。由于它们是钻石中的固态系统,因此可以在室温下操作传感器。因此,由于不需要低温温度,因此结构可以保持不那么复杂。NV中心是钻石中的点缺陷。钻石晶体结构如图1 a所示。两个碳原子被氮原子(红色)和相邻空位代替。对于固体钻石中的NV中心的合奏,钻石四面体结构内的所有四个方向都是可能的(用黄色原子表示)。带负电荷的NV中心是一个自旋s = 1系统,带有旋转三重态处于基态基态(3 a 2)和激发态(3 e)(参见图1 b)基态的光激发是自旋的。m s = 0自旋状态引线中电子的衰减
mRNA 疫苗在抗击 COVID-19 方面的成功,使 mRNA 疗法成为基因治疗中一个充满希望的领域,涵盖蛋白质替代、疫苗免疫学和再生医学等应用。1、2 尽管 mRNA 的脆弱性和负电荷带来了挑战,但人们已经探索了各种递送系统来加速 mRNA 疗法的开发,其中脂质纳米颗粒 (LNP) 成为临床前和临床研究中最成功和最主要的纳米载体。3 为了将这些纳米载体的成功扩展到更多基于 mRNA 的治疗领域,关键在于提高疗效同时最大限度地减少副作用,这强调了精准递送 mRNA 的重要性。实现精确的位点特异性 mRNA 递送需要仔细考虑各个层面的潜在障碍,包括器官、组织和细胞结构。 4 − 7 本观点深入探讨了纳米载体克服多层次障碍并实现位点特异性 mRNA 递送的靶向递送策略概述,包括优化给药途径、促进被动靶向和促进主动靶向(图 1)。目的是通过不同的靶向策略应对挑战并阐明优化 mRNA 递送系统的方向,从而释放 mRNA 治疗在各种应用中的潜力。■ 给药途径
范德华材料中的旋转缺陷为推进量子技术提供了有前途的平台。在这里,我们提出并演示了一种基于宿主材料的同位素工程的强大技术,以确切地提高嵌入式自旋缺陷的相干性能。专注于六角硼(HBN)中最近发现的负电荷硼空位中心(V B),我们在同位素上种植同位素纯化的H 10 B 15 N晶体。与HBN中的V b相比,同位素的自然分布与同位素的自然分布相比,我们观察到较窄且拥挤的V B旋转过渡以及延长的相干时间t 2和松弛时间t 1。对于量子传感,在我们的H 10 B 15 N样品中的V B中心在DC(AC)磁场敏感性中表现出4(2)个因子。对于其他量子资源,V B高级别水平的个体可寻址性实现了对三个最近的邻居15 N核自旋的动态极化和相干控制。我们的结果证明了同位素工程对增强HBN中量子自旋缺陷的特性的力量,并且可以很容易地扩展到改善广泛的范德华材料家族中的自旋Qub。
纳米过滤(NF)提供了一种可扩展且节能的方法,用于从盐湖中提取锂。然而,由于其水合离子半径的紧密相似性,锂与镁的选择性分离,尤其是在镁浓度高的盐水中,仍然是一个重大挑战。有限的LI + / mg 2 +当前NF膜的选择性主要归因于对孔径和表面电荷的控制不足。在这项研究中,我们报告了结合功能化的磺化carge胶以调节界面聚合过程的层间薄膜复合材料(ITFC)膜的发展。该集成的层间在控制胺基单体的扩散和空间分布中起着至关重要的作用,从而导致形成致密的纳米条纹聚酰胺网络。与常规的TFC膜相比,这些结构改进,包括精致的孔径和减少负电荷可显着提高LI + /Mg 2 +选择性(133.5)和渗透率增加2.5倍。此外,纳米条纹结构优化了膜过滤区域,同时最大程度地降低了离子传输抗性,从而有效克服了离子选择性和渗透性之间的传统权衡。这项研究强调了ITFC膜在达到高锂纯度和恢复的潜力,为大规模从盐水中提取大规模锂的途径有前途的途径。
摘要。细胞外聚合物物质(EPS)是许多上层和本元环境中重要的有机碳储层。EP的产生与植物和皮科普兰顿的生长密切相关。EPS通过阳离子的结合并用作最小值的成核位点在碳酸盐沉淀中起关键作用。水柱中碳酸钙沉淀的大规模发作(Whiting事件)已与蓝细菌开花有关,包括Synechococococococococococococococcus spp。触发这些降水事件的机制仍在争论中。我们提出的是,在指数和固定生长阶段产生的蓝细菌EPS在白色的形成中起着至关重要的作用。这项研究的目的是研究2个月蓝细菌生长的EPS产生,模仿开花。在Syechococcus spp的不同生长阶段检查了EP的产生和特征。使用各种技术,例如傅立叶变换红外(FT-IR)表格,以及比色和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳(SDS-PAGE)测定法。我们通过体外降水实验进一步评估了EPS在碳酸盐预紧次的预言中的潜在作用。在早期和晚期阶段产生的EPS含有比指数阶段产生的EPS中的更大的负电荷组。con,固定相EPS的较高Ca 2 +结合的依次导致形成了较大量的较小
外壳它们与相邻硅原子形成4个共价键。这将形成一个纯晶格,其中没有脱位的电子,并且是绝缘子。硅是一种半导体材料,因此可以通过称为“掺杂”的过程将杂质引入晶体结构来量身定制。最常用的元素是磷和硼。对于标准的NPN或PNP晶体管,术语PNP和NPN术语引用了其中的材料的布置。硅可以通过不存在电子的可移动正电荷(孔)进行操作,或者当结构中存在多余的电子时。用价3离子掺杂(例如Boron)(p-Type)在掺杂价5个离子时会产生带正电荷的材料(例如,磷)(N型)形成带负电的材料[3]。在它们之间的边界中产生一个负耗竭层,该层是由于负电荷相互驱除而阻止更多的电子通过。当通过第三端子将正电压应用于晶体管的底部时,耗尽层被否定,使电子自由流动并完成电路。虽然仍用作开关组件,但事实证明,晶体管在控制当前输入电容器的内存芯片中特别有用。此类存储的值提供了二进制表示的基础。与布尔代数一起,晶体管支撑着每个电子设备的功能。达灵顿晶体管可用于扩增电信号
经验通过向学生解释他们将建模电路来开始体验。要求他们形成一个圆圈,并向每个学生分发索引卡。所有学生都有一项项目,说:“我们现在是电路的全部。我代表电池,你们都是绝缘电线的一部分。您持有的索引卡所有代表将在我们电路中流动的电子。作为电池,我有一个正(左侧)和负(右侧)杆。我们的电子被负电荷,这意味着它们将被吸引到正面,并从负面击退。为了建模电流,我们都将向右传递索引卡。这表示我们电路中的电流。每个人一次只能持有一个电子,您只能将电子直接传递给直接的人。”开始在圆圈周围传递对象当您通过对象时,请一些学生走出圈子。这代表开路,将停止电路周围的电子流。此活动应大约需要5分钟。完成了对电路进行建模建模后,请学生配对并将电池,两根电线和手电筒分配到每对。指示学生必须使用演示中学到的知识来制作实际电路。学生将尝试不同的设计并构建工作电路。在各组之间旋转以根据需要提供帮助。学生完成了电路后,请他们画出他们构造的电路的图。
这些PFA可能以多种形式存在,例如异构体或相关盐,并且每种形式都可能具有单独的casrn或根本没有casrn。此外,这些化合物在不同的分类系统下具有各种名称。但是,在与环境相关的PHS上,这些PFA有望在水中分离其阴离子(带负电荷)形式。例如,HFPO-DA是一种阴离子分子,含有铵盐(CASRN 62037-80-3),共轭酸(CASRN 13252-13-6),钾盐盐(CASRN 67118-55-2)和丙二氟化物氟化物前库(Casrn 2062-8-8-8-8-8-8-8-8),在与环境相关的pH值下,所有这些都将其分离为丙酸/阴离子形式(CASRN 122499-17-6)。列出的每个PFA都有多个具有不同化学连接性的变体,但具有相同的分子组成(称为异构体)。通常,PFA的异构体组成被归类为“线性”,由无分支的烷基链或“分支链”组成,其中包括潜在的多样化分子组,包括至少一个,但可能更多,但可能更多,但可以从线性分子分离。虽然在广泛相似,但异构分子可能在化学特性上具有差异。PFA的最终国家主要饮用水调节涵盖了所列化学物质的所有盐,异构体,前体和衍生物,包括可能创建或鉴定的阴离子形式以外的其他衍生物。