自 2022 年 6 月抵达挪威以来,看到许多挪威企业蓬勃发展,挪威公司在美国投资并发展壮大,我深受鼓舞。挪威公司希望通过美国经济扩大规模并寻找新客户、合作伙伴和投资者。美国公司希望通过挪威寻找独特的市场机会,进行创新、寻找合作伙伴并接受挑战。总之,受益于一个非常高效的生态系统。
对于可持续发展目标而言,人工智能意味着什么?在深入探讨人工智能如何为长期解决健康问题做出贡献之前,我们有必要先从简单问题开始:什么是人工智能?一个简单的定义是,人工智能是数字计算机或计算机控制的机器人执行通常与智能生物相关的任务的能力 [7]。此外,它是可持续发展所需的盟友,可以更有效地设计、执行、建议和规划地球的未来及其可持续性。目前,人工智能能力正以各种方式被用于进一步实现社会目标,而可持续发展目标 3 中关于“良好健康和福祉”的内容在联合国 2015 年制定的 17 个可持续发展目标中占有重要地位 [6]。
汇款是尼泊尔国民经济的第二大贡献。尼泊尔大部分在国外工作的移民工人都是非技术工人。在国外工作的尼泊尔专业和高技能工人很少。尼泊尔青年选择国外就业是为了在发达国家获得就业机会和更好的生活。汇款是尼泊尔政府的主要收入来源。现代经济学家认为,外国汇款不可持续,对国民经济没有好处。他们建议在祖国即尼泊尔创造就业、工业和市场化。但实际上,汇款是尼泊尔国内生产总值的第二大贡献。同样,外国就业和汇款以多种方式为尼泊尔做出了贡献,例如美元兑换、外贸平衡、知识成就、技能转移、技术进步等。
生活系统的基本特征是将多维式信号与内存相结合,以便在不断变化的环境中产生复杂的自组织行为。使用单细胞中信号网络级别的计算,我们已经确定细胞利用动态幽灵状态作为一种存储器生成机制,以从随着时间变化的信号中整合信息,并通过实验验证了幽灵状态是细胞表面受体网络在关键性组织中组织的细胞表面受体网络的新特征。i将与幽灵状态讨论生物计算的理论框架的发展,并探索我们可以将发现从单个单元格中的信号网络扩展到整个神经元网络执行的计算。
X射线极化设置为打开一个新窗口,进入高能的天文来源,例如中子星和黑洞。2021年末,IXPE(基于卫星的软X射线仪)即将推出的IXPE和XL-Calibur(2022年气球 - 播种硬X射线极性计)的发射很快将提供敏感的X射线极化测量值。这些测量值可用于研究中子恒星周围的强磁场。从中子恒星发出的X射线光子的极化受到血浆和可能的真空双向效应的强烈影响。两种各向异性都是由于较大的磁场强度而诱导的,并取决于极化矢量和局部磁场的相对方向。因此,X射线极化的测量将对恒星周围的磁场配置提供强大的约束。此外,极化还可以为存在真空双折射的长期实验确认。这种现象是对量子电动力学的长期预测,是外部磁场中真空波动引起的。在本演讲中,我将强调如何使用XL-Calibur的独特功能在2022年夏季从瑞典Esrange飞行期间,使用XL-Calibur的独特功能来研究中子星磁场。
在修饰的重力框架内,准静态和亚匹配近似值被广泛用于分析,旨在在后期识别与一致性模型的偏离。通常,假设时间导数相对于空间衍生物是亚分析,鉴于相关的物理模式是哈勃半径内的那些模式。实际上,根据重力电位和所涉及的物质领域的扰动,这些近似值下的扰动方程将减小为可拖动的代数系统。在这里,在F(r)理论的框架中,我们使用新的参数化方案调用这些近似值时,我们将重新访问标准结果,该方案使我们能够跟踪扰动方程中每个时间衍生术语的相关性。这种新方法揭示了在标准程序中获得的校正项。我们通过将两种方法的结果与两种知名玩具模型的完整数值解决方案进行比较:设计师F(R)模型和HU-Sawicki模型来评估这些差异的相关性。我们发现:i)可以将子马近似值安全地应用于量表0的线性扰动方程。06 h / mpc Lessimk Lessim 0。2 h / mpc,ii)在这个“安全区域”中,准静态近似值即使在某些情况下,即使在某些情况下,对于宇宙预算,即使黑能有显着促进宇宙预算,即使暗能对宇宙预算产生显着贡献,也可以对宇宙预算产生显着贡献,甚至有助于宇宙预算,即使在某些情况下,我们的新方法也比标准过程更好。,尽管对于研究案例,这一重大改进对线性可观察物的影响很小,但这并不代表我们方法的无效。相反,我们的发现表明,在更通用的修改重力理论(例如Horndeski)中,在这些近似值下得出的扰动表达式也应重新审视。
在此演示文稿中,我将激励和构建受强磁场的手性血浆的流体动力描述。这样的描述可以应用于夸克Gluon等离子体或天体物理等离子体。kubo公式,该公式将22个传输系数与特定相关函数相关联。在这些运输系数中,8是新颖的。已知的传输系数,例如大厅的粘度和霍尔电导率,现在分为两个,一个纵向和一个横向到磁场。我们通过计算特定全息模型中的所有传输系数来成功检查有效性检查。在这种全息双重的双重化学潜力下,出现了量子临界点。我们计算纠缠端的纠缠熵,并在此临界点附近猜测一个C功能,最终针对量子关键转运的理论描述。通过凝结物理学的实验可访问的系统显示这些特征是Weyl Semimetals。