ℓ H ℓ 是任意二阶量子化费米子哈密顿量的乔丹-维格纳变换。Select ( H ) 是几种量子算法的主要子程序之一,包括最先进的哈密顿量模拟技术。如果二阶量子化哈密顿量中的每一项最多涉及 k 个自旋轨道,且 k 是与自旋轨道总数 n 无关的常数(文献中考虑的大多数量子化学和凝聚态模型都是如此,其中 k 通常为 2 或 4 ),则我们对 Select ( H ) 的实现不需要辅助量子位,并且使用 O ( n ) Cliufford+ T 门,其中 Cliufford 门应用于 O (log 2 n ) 层,T 门应用于 O (log n ) 层。与以前的工作相比,这实现了 Clifford 和 T 深度的大幅提升,同时保持了线性门数,并将辅助门数减少到零。
其中,我们记为 σ µ = ( I, − σ i ) 和 ˆ σ µ = ( I, σ i )。σ i 是通常的泡利矩阵。在以下的讨论中,我们将处处使用外尔基。现在我们考虑能量为 E(可以为正数或负数)的狄拉克方程的稳态解,它们不过是 Ψ( x ) = e − i Et Φ E ( x )。这里,Φ E ( x ) 满足狄拉克方程 ( 1 ),只是 i∂ 0 处处被 E 取代。稳态提供了一个完整的基础,任何一般解 Ψ( x ) 都可以根据它展开。此外,它们帮助我们看到狄拉克方程的一个重要的内部对称性,称为电荷共轭对称性。如果 Φ(x) 是与能量 E 相关的状态,我们可以找到相应的电荷共轭态,定义为
摘要 相对论费米子场论构成了所有可观测物质的基本描述。最简单的模型为嘈杂的中型量子计算机提供了一个有用的、经典可验证的基准。我们计算了具有四费米子相互作用的狄拉克费米子模型在 1 + 1 时空维度的晶格上的能级。我们采用混合经典量子计算方案来获得该模型中三个空间位置的质量间隙。通过减轻误差,结果与精确的经典计算非常一致。我们的计算扩展到手性对称出现的无质量极限附近,但在这个范围内量子计算的相对误差很大。我们将结果与使用微扰理论的分析计算进行了比较。
最近提出的 2 + 1 维非阿贝尔玻色子-费米子对偶在道义上将 U ( k ) N 与 SU ( N ) − k 陈-西蒙斯物质理论联系起来,为探索从阿贝尔复合粒子理论可获得的非阿贝尔量子霍尔态前景提供了一个新平台。在这里,我们重点研究将玻色子或费米子的阿贝尔量子霍尔态理论与部分填充朗道能级的非阿贝尔“复合费米子”理论联系起来的对偶。我们表明,这些对偶预测了特殊的填充分数,其中阿贝尔和非阿贝尔复合费米子理论似乎都能够承载不同的拓扑有序基态,一个是阿贝尔态,另一个是非阿贝尔态,即 U ( k ) 2 Blok-Wen 态。我们认为,这些结果并不与对偶性相冲突,而是表明了意想不到的动力学,其中红外和最低朗道能级极限无法跨对偶性交换。在这种情况下,非阿贝尔拓扑序可能会不稳定,有利于阿贝尔基态,这表明阿贝尔态和非阿贝尔态之间存在相变,该相变很可能是一级相变。我们还将这些构造推广到其他非阿贝尔费米子-费米子对偶性,在此过程中利用对偶性获得了各种成对复合费米子相的新推导,包括反普法夫态。最后,我们描述了在多层结构中,跨 N 层的复合费米子的激子配对如何也能生成具有 U (k)2 拓扑序的 Blok-Wen 态家族。
量子计算机即将为现代技术带来革命,为科学家提供无与伦比的计算资源。借助叠加原理和纠缠等量子力学现象,这些计算机可以解决某些计算问题,而这些问题即使是最强大的传统超级计算机也无法解决。阻碍这场计算革命的主要挑战之一是对量子比特的精确控制。量子系统极其脆弱,从本质上讲,如果不破坏其量子态,就无法对其进行测量。我编写了一个数值程序来求解时间相关的薛定谔方程,这是一个描述波函数演化的微分方程。我的代码相对于其他求解器的优势在于速度。我使用了图形处理单元 (GPU),这是一种最近才成熟的技术,可以加速高性能计算。硬件加速使我能够在几天内而不是几年内解决复杂的时间演化问题。如此出色的加速使我能够计算半导体器件中单个电子的行为。电子特别有趣,因为它们在现代技术中无处不在,而且是基本的量子粒子。使用我的代码生成的模拟,我跟踪了电子波函数在量子电路中传播时的时间演变。通过动画呈现波函数的演变,我能够直观地看到电子在空间和时间中传播的波函数。这是研究纳米器件中量子粒子行为的出色工具。我的论文重点关注实验室中现成器件的实际建模或可在不久的将来制造的设计。我首先将单个电子建模为量子比特。我给出了最佳量子比特的定义,并列出了操纵电子携带的量子信息所需的操作集。
(这里 n = 0,1,2 …)表明存在具有 π Berry 相的狄拉克费米子 2,3,这反映了狄拉克点的拓扑性质。从那时起,许多其他类别的在其能带结构中具有狄拉克/韦尔节点特征的拓扑材料被预测和识别 4,5,在自旋电子学、光电子学和量子计算应用方面具有巨大潜力。然而,这些由两个能带或两个自旋极化能带分支交叉产生的狄拉克/韦尔点通常仅限于没有可利用带隙的半金属。在这项工作中,我们引入了一种新的半导体系统:碲烯(碲的二维 (2D) 形式),在导带最小值附近具有韦尔节点特征。二维极限下的拓扑材料和半导体的结合使我们能够以更可控的方式探索韦尔物理并设计拓扑器件。
我们引入一个在三元树上定义的费米子到量子比特的映射,其中 n 模式费米子系统上的任何单个 Majorana 算子都映射到对 ⌈ log 3 (2 n + 1) ⌉ 个量子比特进行非平凡作用的多量子比特 Pauli 算子。该映射结构简单,并且是最优的,因为在任何对少于 log 3 (2 n ) 个量子比特进行非平凡作用的费米子到量子比特映射中都不可能构造 Pauli 算子。我们将它应用于学习 k 费米子约化密度矩阵 (RDM) 的问题,该问题与各种量子模拟应用有关。我们表明,通过重复单个量子电路 ≲ (2 n + 1) k ϵ − 2 次,可以并行确定所有 k 费米子 RDM 中的各个元素,精度为 ϵ。这一结果基于我们在此开发的方法,该方法允许人们并行确定所有 k 量子比特 RDM 的各个元素,精度为 ϵ,方法是将单个量子电路重复 ≲ 3 k ϵ − 2 次,与系统大小无关。这改进了现有的确定量子比特 RDM 的方案。
我们提出了一个量子自测试协议来认证涉及马约拉纳费米子模式的费米子宇称测量。我们表明,观察到一组理想测量统计数据意味着实施的马约拉纳费米子宇称算子的反交换性,这是马约拉纳检测的必要先决条件。我们的协议对实验误差具有鲁棒性。我们获得了与误差呈线性关系的状态和测量算子的保真度下限。我们建议根据语境见证 W 来分析实验结果,对于任何经典数据概率模型,它都满足 ⟨ W ⟩≤ 3。不等式的违反证明了量子语境性,与最大理想值 ⟨ W ⟩ = 5 的接近程度表示对马约拉纳费米子检测的置信度。