人们普遍认为,量子力学中只有两种类型的粒子交换统计数据,即费米子和玻色子,二维中的任意子除外 1–5 。原则上,第二种例外被称为准统计数据,它延伸到二维之外,曾被视为 6 但被认为在物理上等同于费米子和玻色子 7–9 。本文我们表明,物理系统中可以存在与费米子或玻色子都不等价的非平凡准统计数据。这些新型全同粒子遵循广义不相容原理,从而产生不同于任何自由费米子和玻色子的奇异自由粒子热力学。我们通过开发准粒子的第二种量化来制定我们的理论,该量化自然包括完全可解的非相互作用理论并结合局部性等物理约束。然后,我们构建了一维和二维的精确可解量子自旋模型系列,其中自由准粒子以准粒子激发的形式出现,它们的交换统计数据可以在物理上观察到,并且与费米子和玻色子明显不同。这表明凝聚态系统中可能存在一种新型准粒子,而且从更推测的角度来看,可能存在以前未考虑过的基本粒子类型。
在从头算电子结构模拟中,费米子到量子比特的映射表示从费米子问题到量子比特问题的初始编码步骤。这项工作引入了一种物理启发的映射构建方法,可在模拟感兴趣的状态时显着简化纠缠要求。电子激发的存在驱动了我们映射的构建,从而减少了量子比特空间中目标状态的相关性。为了对我们的方法进行基准测试,我们模拟了小分子的基态,并观察到与使用传统映射的先前研究中的经典和量子变分方法相比,我们的性能有所增强。特别是在量子方面,我们的映射需要减少纠缠层数量,以实现 LiH、H 2 、( H 2 ) 2 、H ̸= 4 拉伸和苯的 π 系统的精度,使用 RY 硬件高效的假设。此外,我们的映射还为 N 2 分子的密度矩阵重正化群算法提供了增强的基态模拟性能。
其中,我们记为 σ µ = ( I, − σ i ) 和 ˆ σ µ = ( I, σ i )。σ i 是通常的泡利矩阵。在以下的讨论中,我们将处处使用外尔基。现在我们考虑能量为 E(可以为正数或负数)的狄拉克方程的稳态解,它们不过是 Ψ( x ) = e − i Et Φ E ( x )。这里,Φ E ( x ) 满足狄拉克方程 ( 1 ),只是 i∂ 0 处处被 E 取代。稳态提供了一个完整的基础,任何一般解 Ψ( x ) 都可以根据它展开。此外,它们帮助我们看到狄拉克方程的一个重要的内部对称性,称为电荷共轭对称性。如果 Φ(x) 是与能量 E 相关的状态,我们可以找到相应的电荷共轭态,定义为
我们证明玻色子和费米子高斯态(也称为“压缩相干态”)可用其线性复结构 J 来唯一表征,该结构是经典相空间上的线性映射。这扩展了基于协方差矩阵的传统高斯方法,并提供了一个同时处理玻色子和费米子的统一框架。纯高斯态可以用兼容凯勒结构的三重 ( G , Ω , J ) 来识别,由正定度量 G、辛形式 Ω 和线性复结构 J 组成,其中 J 2 = − 1 。混合高斯态也可以用这样的三重结构来识别,但 J 2 ̸ = − 1 。我们应用这些方法来展示如何将涉及高斯态的计算简化为这些对象的代数运算,从而得到许多已知和一些未知的身份。我们将这些方法应用于研究(A)纠缠和复杂性、(B)稳定系统的动力学、(C)驱动系统的动力学。由此,我们编制了一份全面的数学结构和公式列表,以并排比较玻色子和费米子高斯态。
2 平衡单粒子格林函数 9 2.1 格林函数的定义.....................................................................................................................................................................................................................................9 2.2 松原格林函数的性质....................................................................................................................................................................................................................................10 2.2.1 周期性和傅里叶级数....................................................................................................................................................................................................................10 . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................................................................................................. 17 2.4.1 莱曼表示.................................................................................................................................................................................................... 17 2.4.2 希尔伯特变换....................................................................................................................................................................................... 17 2.4.2 希尔伯特变换....................................................................................................................................................................................................... 17 20 2.4.3 松原频率求和....................................................................................................................................................................................................................20 2.5 2 粒子相关函数....................................................................................................................................................................................................................................................................21
该模型的厄米性保证了具有实特征值的能量守恒,但当量子系统与其环境交换粒子和能量时,该模型的厄米性就会失效。这种开放的量子系统可以用非厄米哈密顿量有效地描述,为量子信息处理、弯曲空间、非平凡拓扑相甚至黑洞提供了重要的见解。然而,许多关于非厄米量子动力学的问题仍未得到解答,尤其是在高维空间中。
我们提出了一个量子自测试协议来认证涉及马约拉纳费米子模式的费米子宇称测量。我们表明,观察到一组理想测量统计数据意味着实施的马约拉纳费米子宇称算子的反交换性,这是马约拉纳检测的必要先决条件。我们的协议对实验误差具有鲁棒性。我们获得了与误差呈线性关系的状态和测量算子的保真度下限。我们建议根据语境见证 W 来分析实验结果,对于任何经典数据概率模型,它都满足 ⟨ W ⟩≤ 3。不等式的违反证明了量子语境性,与最大理想值 ⟨ W ⟩ = 5 的接近程度表示对马约拉纳费米子检测的置信度。
量子信息和量子多体物理学的一个特别有趣的接口是研究量子电路,它代表量子粒子或材料物理学中系统的(幺正)时间演化。这些电路最基本的形式是“砖墙”电路,其属性由代表墙上一块砖的 2 量子比特门的选择决定。这种类型的研究通常选择两种极端选择之一:要么假设随机选择 2 量子比特幺正([ 1 ] 及其参考文献),要么相反,选择一个结构化的 2 量子比特门,从而对幺正砖墙 (UBW) 电路进行一定程度的分析控制。事实上,如果将 2 量子比特门选为满足杨-巴克斯特恒等式的所谓 R 矩阵,则可以安排相应的 UBW 电路,使其作为算子与大量守恒电荷进行交换。请参阅 [ 2 – 4 ],其中提出并分析了此过程;[ 5 – 7 ],其中研究了此类电路以及与“可积 trotterization”相关的一系列物理现象。参考文献 [ 8 ] 特别将这些想法应用于 XXX 可积自旋 1/2 海森堡磁体的 R 矩阵,并分析了其守恒电荷,包括解析分析和量子计算硬件上的实现。我们指出了利用类似概念的其他实验 [ 9 , 10 ]。
实收资本额时不在此限;另视公司营运需要及法令规定提列特别盈余公积,如尚有盈余并同期初未分配盈余,由董事会拟具盈余分配案,以发行新股方式为之时,应提请股东会决议后分派之。 本公司依公司法规定,授权董事会以三分之二以上董事之出席,及出席董事过半数之决议后,将应分派股息及红利或公司法第二百四十一条第一项规定之法定盈余公积及资本公积之全部或一部以发放现金之方式为之,并报告股东会。股利分派比例如下: 当年度拟分派盈余数额不得低于累积可分配盈余之百分之五十;现金股利,不得低于股利总额之百分之十。 员工酬劳发给股票或现金之对象,得包括符合一定条件之控制或从属公司员工。 第七章附则第三十条:本公司组织规程及办事细则另定之。 第三十一条:本章程未订事项,悉依公司法及其他法令规章办理。
多年来,量子比特已成为量子计算事实上的基础,其宿主平台多种多样:超导电路 [ 2 , 3 ] ::::: [2,3]、捕获离子 [ 4 , 5 ] 和量子点 [ 6 ] 等等。最近的研究使用基于量子比特的量子计算机来模拟费米子系统 [ 7 – 9 ]。然而,从量子比特到局部费米子模(LFM)的映射效率低下,因为它会给计算带来额外的开销 [ 10 , 11 ]。例如,从 n 个量子比特到费米子的映射需要通过 Jordan-Wigner 变换进行 O ( n ) 次额外运算 [ 12 ],通过 Bravyi-Kitaev 变换进行 O (log n ) 次额外运算 [ 1 ]。避免量子比特到 LFM 映射中的开销的另一种方法是使用已经使用局部费米子模式运行的量子计算机 [ 1 ]。此外,局部费米子模式的优势不仅限于费米子系统的模拟 :::::::: 费米子 :::::::: 系统