槲寄生在法国赤松林中发生率的上升是阿尔卑斯山赤松林保护和可持续性面临的主要问题之一。与天然林相比,人工林更容易受到生物入侵。研究区域覆盖着针叶林(低海拔地区主要是法国赤松),法国西南部阿尔卑斯山的一部分黑森林受到半寄生虫槲寄生的严重影响。由于槲寄生的发生,研究区域的法国赤松树枝肿胀、树体弯曲;树木死亡率惊人。为了管理和尽量减少生物入侵,检测和绘图在森林保护中起着关键作用。通过遥感技术检测和绘制生物入侵地图是研究人员要克服的挑战。高分辨率 (VHR) 卫星图像和航空图像的进步以及遥感和 GIS 技术的应用,已在森林健康状况的检测、绘图和监测方面显示出良好的效果。在本研究中,数字航空正射影像(分辨率 15 厘米)和 VHR 卫星图像 WorldView-2(全色 0.5m 和多光谱 2m)用于通过基于像素的最大似然分类器检测和绘制欧洲松林中槲寄生的存在。在 WorldView-2 光学影像上,成功绘制了欧洲松林的分布,精度较高(96%),kappa 系数为 0.84。存在槲寄生的欧洲赤松在所有波段的光谱反射率都较低,但 WorldView-2 的 NIR1、NIR2 和红边对槲寄生的区分能力更强。同样,植被指数 NDVI 85(红光和 NIR2 的波段组合)也有区分槲寄生的潜力。此外,结果表明,槲寄生与海拔呈负相关和显著相关(r=-0.5135;p<0.01),而与欧洲赤松的 DBH 呈显著正相关(r=0.52;p<0.01)。通过使用海拔和 DBH 建立了弱但统计显著的多元回归和逻辑回归,以模拟欧洲赤松树中槲寄生的发生率。通过应用基于像素的最大似然算法对松林中的槲寄生进行检测,在 WorldView-2 图像中实现了总体分类准确率 (86%) 和 kappa 系数 (0.52)。2m 分辨率 WV-2 与 0.15cm 分辨率正射影像分类输出的比较表明,空间分辨率较低但光谱分辨率较高的 WV-2 影像的分类精度较高(86%)。这项研究揭示了高分辨率光学影像在检测和绘制树木侵染地图方面具有巨大潜力。检测和绘制此类生物入侵地图可为更好地管理森林提供有用信息。关键词:检测和绘图、欧洲赤松、槲寄生、光学影像、生物入侵
图2 :(顶)8 He + P→P + 4 He + 4n反应的示意图。 (培养基)使用此反应的RIBF实验设备。左侧的8 HE梁被入射,并与氢靶标反应,并使用由电磁体和一组探测器组成的武士光谱仪分析了生成的4和质子P。 (底部)获得的4个中子系统的能量光谱。水平轴E 4n是4-中子系统的能量,减去4-中子的质量总和。观察到峰(红线)显示了MEV的四脉,宽度γ= 1.75±0.22(统计)±0.30(标准)MEV。
古巴为实现农业可持续发展所做的努力包括大规模使用生物制剂,这产生了巨大的经济、生态和社会影响。甘蔗是我国主要农作物之一,在世界范围内具有重要的经济和生态意义。本研究证明了不同碳源和氮源对 5 种甘蔗内生菌株生长的影响,其中 3 种为固氮葡萄糖醋杆菌,1 种为地衣芽孢杆菌,1 种为成团肠杆菌。同样,研究了五个品种的汁液以及不同浓度的植物激素 3-吲哚乙酸 (IAA) 和赤霉酸 (GA) 对生长的影响。结果表明,在LGI培养基中添加天冬酰胺和硫酸铵作为氮源,能够促进所研究的内生细菌更好地生长。添加甘蔗汁的LGI培养基显著有利于(p≤0.05)内生微生物的生长,并且果汁的品种来源与菌株之间没有直接关系。另一方面,低浓度的植物激素有利于生长,而当培养基中存在高浓度的植物激素时则不然。有必要研究所有能够影响植物与内生菌之间相互作用的因素,以发挥它们作为植物生长促进剂的潜力。
AP Moller-马士基集团 . ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .11 ADD 公司。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .34 阿依达游轮。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .52 赤坂柴油机有限公司。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .53 英美资源集团 NV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................................................................................................................................................................5 Bez Motory AS ........................................................................................................................................................................................................................34 Bocimar ........................................................................................................................................................................................................................................................16 委内瑞拉玻利瓦尔共和国 ..................................................................................................................................................................................................................16 .16 Bollinger 海洋制造商 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .19 布罗斯特罗姆油轮。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .32 布伦顿。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .52 加拿大边境服务局。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .50 卡特彼勒 . 。 。 。 。 。 ..................................................................................................................................................................................................................................................................27 Caterpillar Motoren GmbH & Co KG..................................................................................................................................................................................37 Caterpillar, Inc........................................................................................................................................................................................................................................................................................34 Chang Myung Shipping........................................................................................................................................................................................................................................................................................34 昌明航运........................................................................................................................................................................................................................................................................................................16 波利海军造船厂。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .16 钱巴尔. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .14 Cido油轮。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .15 克拉克森。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .5 中巴。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .16 康科迪亚海事。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .19 中远集团. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .53 中远集团. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .52 中远船务集团。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .52 歌诗达邮轮公司。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .52 沿海. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .52 CRM Spa 船用发动机。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .34 CSP电子有限责任公司。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .18 康明斯。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .18, 19, 52 海关-商贸反恐伙伴关系 . 。 。 。 。 。 。 。 。 。 .50 大宇造船。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .10 大发柴油机制造有限公司. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .35 达门造船集团。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .53
1.1 基本信息 它是如何工作的?新兴救生技术 ELT406GPS 是一款独立的紧急定位发射器,它将新标准数字 406.037 Mhz 无线电遇险信标与 GPS 生成的纬度/经度位置数据相结合。信号由 Cospas/Sarsat 卫星搜索和救援 (SAR) 系统接收。在飞行过程中,GPS 装置每 15 秒自动更新一次您的当前位置。激活后,每 50 秒向全球卫星系统发出一次 5 瓦信号。25 米* 范围内的您的位置将传送给搜索和救援人员。* 注意:目前 Cospas Sarsat 系统仅以 4 秒为增量接收纬度/经度。这相当于赤道上的 300 英尺。谁在控制?国际 Cospas-Sarsat 计划提供准确、及时和可靠的遇险警报和位置数据,以帮助搜救机构协助遇险人员。COSPAS (КОСПАС) 是俄语单词“Cosmicheskaya Sistema Poiska Avariynyh Sudov”(Космическая Система Поиска Аварийных Судов) 的首字母缩写,翻译为“用于搜寻遇险船只的空间系统”。SARSAT 是搜索和救援卫星辅助跟踪的首字母缩写。SARSAT 系统由美国、加拿大和法国联合开发。在美国,SARSAT 系统由美国商务部下属的国家海洋和大气管理局 (NOAA) 负责管理。欲了解更多信息,请访问:http://www.cospas-sarsat.org
肉质果实形状是影响水果使用和消费者偏好的重要外部品质性状。因此,改变果实形状已成为作物改良的主要目标之一。然而,人们对果实形状调控的潜在机制了解甚少。在本综述中,我们以番茄、黄瓜和桃子为例,总结了肉质果实形状调控遗传基础的最新进展。比较分析表明,OFP-TRM(OVATE 家族蛋白 - TONNEAU1 募集基序)和 IQD(IQ67 结构域)通路可能在调节果实形状方面有所保留,它们主要通过调节肉质果实物种之间的细胞分裂模式。有趣的是,发现 FRUITFULL(FUL1)、CRABS CLAW(CRC)和 1-氨基环丙烷-1-羧酸合酶 2(ACS2)的黄瓜同源物可调节果实伸长。我们还概述了拟南芥和水稻中 OFP-TRM 和 IQD 途径介导的果实形状调控的最新进展,并提出 OFP-TRM 途径和 IQD 途径通过整合植物激素(包括油菜素类固醇、赤霉酸和生长素)和微管组织来协调调节果实形状。此外,还展示了 OFP、TRM 和 IQD 家族成员的功能冗余和分歧。本综述概述了目前关于果实形状调控的知识,并讨论了未来研究中需要解决的可能机制。
Ceratocystis manginecans 可导致芒果枯萎病,造成重大的经济损失。在感染过程中,角铂素 (CP) 家族蛋白 (CPPs) 被认为参与致病机制,但在 C. manginecans 中尚未确定。为了证实此功能,本研究对 C. manginecans 的 CP 蛋白 (CmCP) 进行了表征。通过用崩溃酶和裂解酶处理 C. manginecans 菌丝体来制备其原生质体。在含有 60% PEG 和 50 µ g/mL 潮霉素 B 的培养基中使用 CRISPR/Cas-U6-1 表达载体编辑 cmcp 基因,得到 cmcp 缺失的突变体 (1 cmcp)。通过将 cmcp 转化为 1 cmcp 获得补充突变体 (1 cmcp -C)。通过与野生型菌株进行比较,对 1 cmcp 和 1 cmcp -C 的形态、菌丝生长、分生孢子产生和致病性进行了表征。此外,cmcp 在毕赤酵母中转化和表达,获得的重组蛋白 CmCP 导致烟草叶片严重坏死。经 CmCP 处理的植物叶片表现出过敏反应症状,包括电解质渗漏、活性氧产生以及防御相关基因 PR-1 、 PAD3 、 ERF1 、 HSR203J 和 HIN1 的过度表达。所有这些结果都表明 cmcp 基因是 C. manginecans 生长发育所必需的,并且是芒果感染的主要致病因子。
葡萄(Vitis Vinifera)组成是葡萄酒质量的天气依赖性决定者。随着气候变化的变化,我们可以预期葡萄酒品质的变化。为了了解这一点的程度,我们构建了路径模型,以创建一个广义的赤霞珠葡萄质量模型,重点是六个重要分子基团的总浓度(糖,pH,苯酚,单宁,单宁,黄酮,黄酮,花青素)。路径模型在统计上使用一系列因模型将因素连接到输出。因此,这种建模方法将输出从一个模型中获取,并将其作为链条将其放入下一个模型中。通过改变气候输入,我们可以模拟气候变化如何影响葡萄的最终成分。我们探讨了几种气候变化情景下组成变化的影响:通过将气候输入更改为路径模型,光,温度和降雨的变化。我们发现,在中等项目的气候变化(RCP4.5和SRES A2和B2的组合)下,我们期望糖浓度更高,酸度较低(中性pH)和较高的总芳族化合物(单宁,酚,酚,黄酮醇和若虫)。我们还发现,成熟的早期开始会导致相同的结果。这两个结果的结合表明,将来有更多与风味相关的化合物,尤其是单宁通常具有更大的衰老潜力的潜力。
co 2气液吸收是具有碳捕获和存储(BECC)的生物能源最相关的技术之一。目前建议在压力/温度旋转过程中碳酸钾作为最可行的BECC过程,在该过程中,它缓冲了CO 2与羟基离子的吸收反应。在整个过程中,溶剂加载在进入吸收器之前将吸收器进入高度之前从低点变化。对于工艺设备的尺寸,在任何情况下都必须知道吸收动力学。为了研究动力学参数,开发了测量设置,并在50至75°C之间测量了溶剂载荷为0.3至0.7的CO 2吸收液的溶剂溶液。通过将CO 2吸收到纯水中来测量传质系数。反应速率常数K OH的获得值显示在增加溶剂载荷时激活能的减少。通常,溶剂加载的增加会导致K OH的值增加。但是,由于较高的负载下pH值较低,可观察到的吸收率降低。一种克服碳酸钾的动力学限制的方法是吸收启动子的利用。在吸收过程中合成并测试了模仿化合物锌(II)循环的碳赤铁蛋白酶。在研究条件下,未发现Zn(II) - 循环的促进作用。
59 r 犀牛 67 f 大象、大象 / 犀牛 69 f 大象 94 狼、鬣狗和北极狐 101 北极耳 108 g 阿塞拜疆、羚羊、大角野牛、野山羊、马克尔…… 113 g 伊朗鹿 115 z 非洲野马和驴 118 水牛、野牛、印度野牛和野牛 120 c 非洲野牛、鼠鹿、鹿、麋鹿和赤麂 126 美洲驼和小羊驼 127 灵长类动物 144 犰狳、美洲驼、水豚、刺豚鼠和猯苓 145 o 獭 146 o 哺乳动物,包括河马和刺猬 149 鸟类 197 各种爬行动物 200 龟和淡水龟 208 蛇 216 克 虎、骆驼、巨蜥和鬣蜥 219 鳄鱼和短吻鳄 222 青蛙和蟾蜍 224 蝴蝶、蚂蚁、甲虫、狼蛛、水蛭 ... 227 m En 工作时,当地居民和动物受到的伤害最大 231 多种物种 254 多种海洋和淡水物种 257 珊瑚 259 甲壳类 260 多种蚂蚁 蛤蜊、枣贻贝 ... 263 鲍鱼 269 多种黄瓜和海胆 274 多种马 276 多种海洋或淡水鱼,包括鲨鱼和鲟鱼 295 多种海洋海龟 299 多种海洋和淡水哺乳动物