→→→→→ 腾→走序〜走→。 →→购→这些→→→→。 腾腾这些→→strumin→→这些→→→→→这些→→→→→→→→→这些〜 12月12.这些→→→。 →→→→→→→→→。 取得了→→→→→→→→→→→→→→→。 →→
摘要:在改善锂金属(LI)库仑效率的虽然是电解质设计的重点,但高电流下的性能较少,但与实际应用相关。在这里,我们使用三种类型的弱溶解荧光电解质来评估电荷率依赖性循环稳定性。尽管在低电流密度下的所有三个电解质中都实现了良好的循环寿命,但它们均表现出在各种阈值电流密度(2至5.2 mA cm -2之间)的柔软短路行为。我们将电流依赖性电极形态归因于LI生长和残留的固体电解质界面(RSEI)生长过程。在早期周期中,Li形态指导了RSEI结构的形成。在后来的周期中,RSEI结构部分影响了LI的生长。在低电流密度下,RSEI不均匀,具有较大的空隙,可用于随后的大量锂生长。在高电流密度下,RSEI变得更加致密,这加剧了通过RSEI的高表面/体积比率的生长。在三个弱溶剂荧光电解质中,观察到离子电导率较低的电解质在较少的周期内和较低的电荷电流密度下短。我们的工作表明,电解质中的快速离子传输可能是高能密度锂金属电池> 1c充电的稳定操作的理想特征。■简介
因果关系边界的固有歧义在评估因果事件提取任务时构成了挑战。传统的会议诸如精确匹配和Bertscore之类的传统会议反映了模型性能,因此我们训练了评估模型以近似人类评估,从而达到了高度的一致性。我们用它们通过提取模型来形成增强学习,以使其与人类的喜好保持一致,并优先使用语义理解。我们通过多PLE数据集成功地探索了我们的方法,包括将在一个数据集中训练的评估者转移到另一个数据集中,以减轻对人类注销数据的依赖。在这种情况下,我们还提出了一种弱至较小的诉讼方法,该方法使用AN-NOTARDATED数据的一部分来训练评估模型,同时仍在训练RL模型中达到高性能。1
摘要 — 我们引入了一种改进的增量学习算法,用于进化粒神经网络分类器 (eGNN- C+)。我们使用双边界超框来表示颗粒,并定制自适应程序以增强外框对数据覆盖和噪声抑制的鲁棒性,同时确保内框保持灵活性以捕获漂移。分类器从头开始发展,动态合并新类别,并执行局部增量特征加权。作为一种应用,我们专注于脑电图 (EEG) 信号中与情绪相关的模式的分类。情绪识别对于增强计算机系统的真实感和交互性至关重要。挑战恰恰在于开发高性能算法,能够有效地管理生理数据中的个体差异和非平稳性,而无需依赖特定于受试者的校准数据。我们从 28 名玩电脑游戏的人获得的 EEG 信号的傅里叶频谱中提取特征 - 这是一个公共数据集。每个游戏都会引发不同的主要情绪:无聊、平静、恐惧或快乐。我们分析单个电极、时间窗口长度和频带,以评估由此产生的独立于用户的神经模型的准确性和可解释性。研究结果表明,两个大脑半球都有助于分类,尤其是颞叶 (T8) 和顶叶 (P7) 区域的电极,以及额叶和枕叶电极的贡献。虽然模式可能出现在任何波段中,但 Alpha (8-13Hz)、Delta (1-4Hz) 和 Theta (4-8Hz) 波段按此顺序与情绪类别表现出更高的对应性。eGNN-C+ 证明了学习 EEG 数据的有效性。即使面对高度随机的时变 4 类分类问题,它也能使用 10 秒时间窗口实现 81.7% 的准确率和 0.0029 II 的可解释性。
当互惠和声誉提供的激励不足时,制度可以让合作持续下去。然而,它们如何做到这一点仍不清楚,特别是考虑到制度本身就是一种合作形式。为了解决这个难题,我们开发了一个基于声誉的合作数学模型,其中两个社会困境相互嵌套。第一个困境的特点是个人成本高或监督不足,不能仅靠声誉来解决。第二个困境是制度集体行动,涉及个人以激励合作的方式做出贡献来改变第一个困境的参数。我们的模型表明,这种嵌套架构产生了杠杆效应。虽然声誉本身不足以激励第一个困境中的合作,但它激励对制度集体行动的贡献,这反过来又加强了第一个困境中最初较弱的合作激励。正如滑轮系统将最小的肌肉力量转化为显著的提升能力一样,机构充当合作滑轮,将最初较弱的声誉激励转化为合作行为的强大驱动力。基于这些结果,我们认为机构已经发展成为社会技术,由人类设计以利用这种社会杠杆效应,就像物质技术旨在利用物理定律一样。
建议引用推荐引用hatamleh,raed。“基于基于弱模糊复数的部分有序环及其与部分有序的中性粒细胞环的关系。”中性粒细胞和系统78,1(2025)。https://digitalrepository.unm.edu/nss_journal/vol78/iss1/31
Xanthomonas属主要研究了与植物的致病相互作用。然而,除了宿主和TIS特异性的致病菌株外,该属还包括从广泛宿主分离的非pt造菌株,有时与致病性菌株和其他环境有关,包括雨水。基于它们的丧失能力或有限的能力在隔离宿主上引起症状的能力有限,非对Xanthomonads可以进一步将其描述为共生和弱致病性。这项研究旨在根据其基于其同时发生和系统发育关系的致病性对应物,了解非对照性黄金元中的多样性和演变,并以生态策略的形式构成了生命历史框架的基因组性状。我们测序了跨越系统发育的83个菌株的基因组,并鉴定出8种新型物种,表明未开发的多样性。尽管某些非致病性物种最近损失了III型分泌系统,特别是HRP2群集,但我们观察到HRP2群集与各种物种的生活方式显然缺乏关联。,我们对337个Xanthomonas菌株的大量数据集进行了关联分析,以解释黄thomonads如何成为与植物的社会化,从共生到弱病原体到病原体的植物。存在明显的转录调节剂,不同的营养利用和同化基因,转录调节剂和化学出租车基因可能解释了Xanthomonads的生活方式特异性适应性。
国家固体微观结构实验室,物理学学院,材料科学和智能工程学院,南京大学高级微观结构合作中心,南京大学,南京210093,B北京国民北京国家实验室,北京国民实验室,北京凝聚力物理学,物理学,研究所,中国北非科学院,北非。 d在上海微型系统与信息技术研究所(SIMIT),中国科学学院,上海200050年中国E上海同步辐射设施,上海高海高级研究所中国科学院,中国科学院中国科学院,中国科学院,中国科学院,中国科学学院,中国国家科学院,中国纽约州纽约大学及化学实验室,CORIDIANTION,COMODIANTION,CONEDINAL NENAN CONEMINISTION,CHICORINATION CHICORINIAND,COMODINAIDE,CHICORINATY CONIDIANT,CHICORINATY CONIDINAL,CHICONINIDER,南京210023,中国Nanjing 211806,中国h国家同步加速器辐射实验室,中国科学技术大学,Hefei 230029,中国I Songshan Lake材料实验室,Dongguan 523808,中国
简介:在可穿戴电子产品的快速发展中,它们对外部功率来源的依赖增加了功率费用,同时导致其在充电期间的运行中断。生物力学能量收割机通过将废物动能转换为电力,为自动可穿戴电子产品提供了有希望的解决方案。尽管成功地将其功率输出从μW推进到MW,但几个挑战仍然存在,包括在μA级处的低输出电流,GΩ级别的高内部阻抗和AC输出限制了其实际应用。常规功率管理电路通常在高频收割机中使用,而无需充分考虑产生的能源损失,当使用较低功率输出的低频收割机时,可能会导致电路故障。
